京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章通过介绍Visualization 即可视化,罗列了数据的展现方式。对于数据分析最困难的一部分就是数据的展示,解读数据之间的关系,清晰有效的传达并且沟通数据信息。
对于数据挖掘,我们可以通过文中对数据可视化的案例找到分析数据、展现数据的方法和思路。
Data visualization 是一件很有趣的事情。最近在尝试处理数据,便顺手翻了翻 visualization 的进展,然后除了 IBM 大名鼎鼎的的 many-eyes 。
还有一个比较好有意思的网站是visualizing。Visualizing 跟 many-eyes 很像,都是社区形式的网站,用户可以注册然后上传,而且网站还有积累下来的很多数据供用户使用。
当然我不是为了介绍这个网站才写这篇 post 的,写 post 是一个记笔记的过程,如果我不能从中学到什么,就有点浪费时间了。下面进入正题,我尝试总结一下 visualization 的时候的几个可用的经验。
从 visualizing.org 的分类中提取出来的有用的形式包括(不过说实话这样分类并不是很好用)
要可视化的数据可以分几类(我想的不全面,欢迎补充,共同学习)
写成 A↔B 粗体的拉丁字母表示一系列对象,比如一系列地点。
这种情况下因为要展示数据之间相互关系,所以实质上是一个 network 图,不过通过一些技巧可以把简单的 network 图变成更好的形式。
方式一:使用转换成 flow 图。通过把对象列出两遍来是的原本应该是一个比较复杂难以看清的 network 变成了清晰易查找的 flow。
这类图中我喜欢的一个是 people moving 的 flow
这个 flow 图非常好的展示了从一个国家移民到另一个国家,上面的截图就是人们移居(migrate,是移民么?)到加拿大的情况,可以看到中国(CH)移民到加拿大的还是比较多的。通过这样的 flow,我们可以很容易很直观的分析数据。
方式二:圈形的 network 图。为什么要做出圈形呢?因为圈形可以使得连线集中在圈内部,而且可以减少数据交叉。通过 interactive design,可以使得连线无交叉。比如这个 Migrants moving money:
这个截图是中国的侨款,也就是中国移民所寄回祖国中国的钱数。可以看排除香港地区,美国是最大的来源。
事实上这种方法与第一种本质是相同的。
方式三:network 图。通过点和连线来关联。例子比如Attractions of Councils: WEF GAC interlink survey
但是这个图实际上并不好。而且有时候,线条是可以去掉的,比如这个国际航班的可视化:
Click a nation to see all connected nations via flights. Click again to see arranged nations based on the distance. Double-click the background to reset.
截图:
方式四:使用 table。不过为了更直观,使用面积等方式来代表数据的大小。
比如 10 个人任意两个人之间相互按照对对方的好感程度打分,为了展示任意两个人 A 和 B 之间相互的好感程度,可以使用颜色柱来展示,选定一个作为两个人好感程度相同,颜色柱之上的颜色表示 A 对 B 的好感大于 B 对 A 的好感,反之亦然。
这里有个 council 之间的例子,截图如下:
就是 Hierarchy 图,不过有时候可以省掉连线。
比如这个 soft drink 的 hierarchy 图
从这张截图立刻可以看到 coca-cola 和 pepsi 的庞大,通过原网页可以自由的放大缩小来查看不同的公司的产品。
这样的 hierarchy 图要比单调的并列的整整齐齐的列举要包含了更多的信息,因为圆圈的大小可以表示数据的一个维度,甚至还可以引入颜色等等来表示更多的维度。
方式一:使用 Histogram。这是比较经典的选择,即使用矩形或者线条的长度来表示数据的大小。例如这个关于能源的 visualization
方式二:使用树图(Tree map),使用面积表示数据的大小。这里有个 UN 的 Global Pulse Visualization 的例子:
方式三:使用散点,使用散点的大小或者颜色等属性来表示数据的大小。
一个很优秀的例子是学生坐座位习惯的例子,截图:
事实上 tag page 也是属于这类,我们可以通过每个 tag 的大小颜色等等来标示数据的大小。
除了可以使用上面说提到的方式,对于坐标数据,有个特点是可以绘制地图(Map),而 Map 可以与其他形式结合,比如 flow。一个比较好的例子是关于我们坐飞机的一张图,截图如下:
图片上部的地图是飞行的出发城市,下部的地图是终点城市。更多内容可以查看UCSB的这个站点,其中提供了 demo 软件。
前些时候,以为天文学家 Goodman 写过一篇关于高维天文数据可视化的论文,其中提到了 linked views 很重要,就是说我们要多种可视化方式联合起来展示数据,我截取论文中一张图片来说明。
不同的 visualization 结合起来对数据进行多角度的呈现,可以使我们对数据有更深刻的理解。所以 data mining 实际上是一个应用非常广泛的专业,一个 data mining 专业的学生在现在这种天文专业被大量数据所轰炸真是个宝贝啊。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10