京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几个奇葩例子让你深度认识大数据
因为大数据,我们的生活是否变得更舒适?亦或,从此我们的生活细节都要暴露在数据的分析之下?我们该如何正确认识大数据?现在,先让我们了解一些真实的大数据的例子。
大数据早已成了我们耳熟能详的词汇,大数据也逐渐得到的政府,企业和个人的重视。基于此,大数据究竟在如何影响着我们的生活?
大数据(Big data)
因为他,我们的生活是否变得更舒适?亦或,从此我们的生活细节都要暴露在数据的分析之下?我们该如何正确认识大数据?现在,先让我们了解一些真实的大数据的例子。
从地球到月球的距离
如果我们将一天内产生的数据全部烧录进DVD光碟内,那这些光碟叠起来可以搭成地表到月球的DVD高塔,而且还是双塔。
大数据与星星
根据IDC的分析,2008年时数码数据量就超过了目前已知的宇宙内星星数量,而且以数据成长的速度,2023年时全球数据量将会超过亚佛加厥常数(Avogadro's number)--也就是6.022×10^23。
亚佛加厥常数
男性内裤销量反映经济形势
已故美联储前主席格林斯潘(Alan Greenspan)曾提出过一个著名的"男性内裤销量反映经济形势"的理论。即经济形势良好,内裤销量会平稳上升,反之则下降。
原因很简单,经济萧条时,男性会节俭开支,少买内裤。。。
啤酒与尿布
这是个经典的商场数据分析案例。在上世纪90年代,美国沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,"啤酒"与"尿布"两件看上去毫无关系的商品会经常出现在同一个购物篮中。
啤酒与尿布
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。
女性头发与经济波动
据日本最大日用品制造公司"花王",于1987年开始在东京银座对1000名,二十至三十岁女性进行的年度民调后汇编的"发型统计"显示,他们偏好蓄长发时显示经济在复苏中,反之则经济仍在恶化。
比如,1997年,留短发的比蓄长发的人多,那年为日本经济"最差"的一年,2008年经济有所起色,超过八成受访女性头发都很长。
手纸与肥皂
双十一海报
前年“双十一”(11.11)这一天,京东商城卖出了80万块香皂,重量约115吨,相当于23头大象;基情无限的同时,手纸卖出900万卷,8亿多抽手纸,按一秒钟扯一抽的话,至少要扯3年,按一卷纸30米算,900万卷至少可绕地球7圈。
处女座与小龙虾
根据"首届小龙虾美食节"的"小云WiFi美食大数据"显示,女性对美食喜欢程度超过男性,66%的女性喜欢吃小龙虾;而在年龄统计中发现,20-25岁的美食达人最多,处女座是所有星座中最爱食用小龙虾的人群。
一位美食大V不无严肃的认为,从一个侧面说明现在商家的小龙虾的制作工艺、烹饪方式已经达到了一定的高水准,"毕竟处女座的追毛求疵的性格是不争的事实"。
女服务员与股市
在这个刷脸的时代,容貌早已成了求职的隐形标准(不过凤姐当上凤凰客户端主笔,理当另说)。据纽约观察员的解读,当美艳的女服务员随店可见时,经济必陷困境,反之则显示经济兴旺,换句话说,当你到处碰见美女服务员,便可考虑抛售股票。
服务员与股市
该观察员的解释是,当经济红火,颇有点"资本"的女性很容易找到工作环境舒适的工作,诸如商品模特、推销员等。此外,男性经济宽裕后也更容易"金屋藏娇"。
大数据遇到爱情
美国波士顿数学家克里斯·麦金利(Chris McKinlay)注册一个婚恋网站后,认为他们的配对模式不合适,于是他自己写程序,只花了不到90天时间就在茫茫人海中找到了心仪的对象。
这位克里斯开设了12个账户,利用计算机程序随意作答网站的配对问卷,从2万名用户中收集到600万条问题的答案,然后利用演算程序筛选出5000名住在美国的活跃用户,从中按性格分类又选出最符合择偶条件的2组女子。
之后克里斯又创建了两个账号,诚实地回答这两类姑娘们最关注的500个问题。回答完问题后,他发现和自己匹配度在90%以上的超过10000人,最高匹配度达到了99%。
克里斯·麦金利
为了获得这些姑娘们的关注。克里斯编了一个新程序,自动访问与他匹配度高的对象,对方回访他的页面时,就会给他留言。
在经过不少尝试后,克里斯终于约到一名亚裔女孩。他见面时主动披露破解网站的秘诀,对方极为欣赏,二人开始恋爱关系。并在恋爱一周年后克里斯求婚成功,二人终成眷属。如此"用心",也是醉了。
食色性也 "看完速7,去速8"
《速度与激情7》
食色性也:凡是人的生命,不离两件大事:饮食、男女。《速度与激情7》上映时,"看完速7,去速8"一度成为相互调侃的流行语。而日前,猫眼电影整合了2015年上半年的售票数据,做了一个有意思的数据报告。报告根据用户购买电影票的习惯,结合用户在美团上的相关消费行为,发现了有意思的现象。
数据显示,用户在购买电影票的同时,有79%会进行餐饮消费,10%会选择唱K、桌游、足疗等休闲活动,还有11%会选择酒店消费。注意噢,酒店消费里,有81%选择的是"速8"一类的经济型酒店……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23