京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算打破了传统的商业模式, 大数据也持续以指数型增长,技术人员和投资人对于当前技术发展趋势都保持密切关注,因为这有可能直接影响到他们2016年及今后的商业行动。下面列举了本年度的五项突破性的创新技术,涵盖了从情感型机器人到无人驾驶汽车:
1、混合云和公共云
混合云和公共云服务日益流行,并且吸引了很多的投资人注入资金到该领域。很多风险投资公司投入了大量资金到SaaS(软件服务)公司,说明云解决方案在未来会有更大的获利空间。
有些人怀疑具有100亿美元估值的Dropbox能否公开上市,事实上,这一领先的SaaS公司在经过六轮融资后已经上升到110亿美元,发展势头是很强劲的。Dropbox也将其战略定位从无处不在的文件共享服务扩展成协同平台,与Adobe和微软达成了战略合作关系。
为了达到其战略定位,Dropbox率先提高云服务年限,以期成为用户实用的伙伴。
图1:Dropbox
然后“数据海洋”的发展势如破竹。
从2011年,纽约的startup公司已经成长为开发者服务的第二大云部署平台,为包括亚马逊、谷歌和微软在内的很多大型公司提供简单的、可升级的SSD云服务平台。“数据海洋”目前已将重心从立足于满足大规模客户的需求转移到用户体验上面。
这一成功举措使startup获得了超过1.83亿美元的融资。2016年,我们期待云服务领域的扩张性发展,从SaaS(软件服务)到PaaS(平台服务),SDN(软件定义网络)和DBaaS(数据库服务)。
2、机器学习
机器学习是指,通过算法计算机可以从经验中学习,不断进步。这在数据准备和 预测分析 领域非常有用。随着动态域名服务的发展,一种更先进的机器学习中采用的算法基于复杂的非线性关系模型,也就是机器可以感知其周围的世界。
苹果的Siri和微软的Cortana就是这种全自主代理的先驱。
在一个后App的未来世界,我们可以想象不只是与案件和菜单之间进行互动,而是通过与智能代理进行交谈的形式。使更多的工程自动化可以将人类从此项工作中解放,我们正在向机器学习和 人工智能 协同前进的未来发展。
图2:几乎触碰的机器人与人类之手(3D渲染)。来自于西斯廷教堂著名的米开朗琪罗画作,名为“亚当的创作”。
人类和机器之间一直不断的竞争可追溯到1996年与Deep Blue的象棋比赛。今年早些时候,谷歌的人工智能AlphaGo第一次打败了国际专业围棋选手而引起了轩然大波。
去年,谷歌收购了伦敦创业公司DeepMind,将其中心放在了发展人工智能方面。通过赢得这项非常复杂游戏,谷歌是想告诉全世界计算机可以有很多方面的应用,例如更好的个人软件管家。我们也可看到很多知名公司将目光聚焦在机器学习领域。
3、无人驾驶技术
我们已经见证了汽车技术巨大的突破:谷歌正在无人驾驶汽车技术上大步前进,而特斯拉则退出了续航里程超长、无人驾驶的电动汽车,让我们能够想象未来汽车可能类似于个人的士,受智能手机控制。同时,共享驾驶App也在爆炸式增长,例如Uber打破了人们对于汽车所有权的传统看法,Lyft和通用汽车也斥资5亿美元研究如何破解自动驾驶汽车共享软件app的代码。
图3:自动驾驶的智能汽车。
不管是否无人驾驶,未来汽车的发展主要取决于是否能够提高乘客的驾驶体验。GPS、蓝牙和Wi-Fi都是标准配置,下一波自动驾驶和电动汽车方面的创新之处在于汽车并不仅仅是交通工具,而是移动的数据中心,与云平台能够连接。技术发展速度总是超出人们的想象,也许十年内我们就能在路上看到无人驾驶的踪迹。
在2016 ,我们希望政府能够出台相应的安全法以适应如此巨大的变革。近期在达沃斯的世界经济论坛就讨论了规范这种新兴技术的重要性。
4、情感识别软件
2015年日本推出了第一个情绪智能机器人。去年推出的1分钟内,Pepper就卖出了1000个,SoftBank则声称今年春天他们推出的机器人无需人类帮助的情况下可以在整个手机卖场跑。
只能机器人显然非常吸引人,部分是因为它们在人性化和专业设置方面具有非常大的应用潜力。基于过去机器人的发展,我们已经有了非常聪明的机器人,与人类交谈可以捕捉到人类的细节和情绪变化,这绝对是很突破性的进步。
图4:DeepGram在测试认知搜索。
苹果最近收购了Emotient,是一个创业公司,采用API根据认知科学、机器学习和计算机视角进行实时情绪分析。这一举动是紧跟着苹果收购Faceshift之后的,该公司专注于面部识别。
基于以上发展趋势,我们不难想见情绪之于我们的移动装置与冷冰冰的数据是同等重要的。
5、大数据简化
大数据可以提供我们前所未有的洞察力,而利用这些数据的关键在于解读和分析。
根据甲骨文公司分析,简单的 大数据挖掘 工具将要有长足的发展,因为这样分析师可以直接在企业Hadoop集群上购买数据,重新调整并采用机器学习技术进行分析。使普通公众对大数据的解读更加全面,这样对于企业来说,能够更好的从用户行为中学习。
结合现在正在发展的人工智能和机器学习,下一步如何利用复杂的大数据是非常重要的。
可预见的未来
我们将要生活在一个充斥着大数据,云计算,无人驾驶汽车,情感机器人的世界中,现实生活可能会本能的抵抗,且抵抗的程度超过我们看过的科幻小说中描述的。但是,单纯想象一下这些技术是如何发展,并且如何改变我们的日常生活都是一件非常激动人心的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01