
好久没写文章了,本人目前从事BI行业,主要做BO(报表展示)这一块,写这一篇文章主要是想分享一下自己的心得。本人不是大牛,基础小白,所以下面你会看到的更多是不经润色(不经大脑)的心得体会,而不是一堆NB轰轰的专业名称,算法,建模思想,分析思路等技术分享型文章。更多的是对这个职业的看法,技术上的问题相信度娘比我更加专业!
欢迎吐槽指正!
说到数据分析一定要讲BI
商业智能(BI,BusinessIntelligence)。
BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
广义的BI是包括很多方面的内容,包括数据处理—》数据存储—》数据仓库—》(数据挖掘)—》BO展示层
BI是智能化的数据分析,说白了就是很多手工的工作我们让电脑帮我们做了,省去大量复杂繁琐的人工,这就是智能。比如日报,周报,月报这些报表我们统一用工具定时自己跑出来!
要说的有3点:
1、目前大部分企业的BI是不包括数据挖掘的,实际上很多人也不是很清楚这个流程,一般只是认为BI就是做报表的。恩,对,就是做报表的(BO展示层)。
2、一般小企业的数据分析岗位,很多只是简单粗暴的DB+Excel,所以你会发现,**,工资好低!
3、DB+Excel是基于小企业数据分析量不大才能这么做的,未来数据暴增下,一个注重数据分析的企业势必会走势智能化这条路,毕竟人工也是成本啊~
数据分析与数据挖掘
/**以下是百度百科解释**/
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据挖掘(英语:Datamining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-DiscoveryinDatabases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据分析和数据挖掘很多人没有分清,数据分析其实也是包括数据挖掘的,不过现在大部分企业细分岗位,一般数据分析和数据挖掘是两个不同的岗位!
以下我所讲的数据分析都是基于目前企业数据分析岗位而言(狭义上的数据分析,做报表的~)
数据分析主要是描述性统计分析,出报表,属于BO层面。工具有IBMcognos、SAPBO、oracleBIEE、MicrosoftSSRS、MicroStrategy、Smartbi、QlikView、Power-BI等~太多了,基本功能都相似,就是做好OLAP数据集后通过可视化的操作开发出报表框架,再定时出报表!
数据挖掘主要用于海量数据挖掘、预测性分析,比如关联规则,分类、回归、聚类、离群点检测之类的算法,主要工具有SAS、SPSS、R&Python、MSDataMing等,SAS&SPSS可视化界面,操作简单,比较容易上手;R&Python需要自己编程,难度比较大,但是函数、算法都封装好了,可以直接拿来用。
数据挖掘主要是基于海量的数据,即大数据。现在感觉任何东西跟大数据挂钩,它就变得高大上了!基于这个数据量的前提,所以目前国内做数据挖掘的主要在金融(银行、保险、证券)、电信、广告等行业&BAT三大巨头!
说实在数据挖掘,算法,统计思想这些不是最重要的,最根本是业务知识!跟BO对比起来,数据挖掘更最要你对业务的理解,如果你对业务理解透彻了,很多东西甚至都不需要经算法建模,只需要画一个透视图、透视表你就会发现其中的规律(知识)了。
很多新手都会问到的一个问题是,入门需要什么技能?
一、对于数据分析而言,最重要的技能是SQL、SQL、SQL+BO工具(这个有些了解就可,毕竟使用简单)
SQL需要会到什么程度?企业日常用到的大部分是:80%(增删查改+连接查询+基本聚合函数+数据格式处理函数)+20%(其他函数使用),而你只要需要会增删查改+连接查询+基本聚合函数+数据格式处理函数这些基础功能即可,其他函数使用通过百度你能看懂能用就行,使用率比较低。
二、对于(DM)数据挖掘而言,建模大部分的工作还是花在了数据处理上,这个要看对应企业使用的工具,数据处理流程要懂!!+算法(建模)思想+统计学基础,业务知识都是在日常工作中积累的。SO,DM的入门基础就相对要高些,门槛也相对较高。
三、补充一点:对于数据分析和数据挖掘以及大数据相关的工作还有一个特别重要的岗位,就是数据库开发。不同于DBA,大部分BI&DM80%数据库开发的工作其实都是在倒腾数据,所以前期数据处理环节特别重要,衍生出专业的数据库开发,主要做ETL、数据迁移,建多维数据集、数据仓库,OLAP,universe,query之类的工作。对技术要求较高,属于底层工作人员,个人觉得特别重要!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10