
大数据在医学上的影响是什么?
大数据已经重新定义了如何提供医疗保健。这并不是说,现有的医疗保健系统正在被丢弃,但某些重大变化正发生在根本性的领域。有些变化是值的注意的:医疗机构正越来越依赖于数据去建立定制化,个性化的治疗模式。重点是收集患者的健康数据,并根据数据,预测疾病的发病以便采取预防措施。这些数据也帮助医生获得病人健康的360度视图。大数据补充了现有的医疗保健系统。
在大数据被引入到医疗保健系统之前,数据的作用是有限的。医院将收集病人的数据,如姓名,年龄,疾病描述,糖尿病档案,医疗报告和家庭病史,那些适用的。这样的数据提供了一个约束病人健康问题的视图。例如,对于一个被诊断患有心脏病的患者来说,典型的信息就是家庭病史,饮食,征兆,年龄和其他疾病。虽然这些信息提供了详细的疾病,数据是无法提供其他角度的问题。还有其他可能会出现的更好的治疗方法去看待这些问题。
发表在自然杂志上的统计,显示了在美国帮助一小部分(<25%)患者的最高收入的十个处方药。对于胆固醇药物,成功率只有2%的患者。因此,成功的概率相比研究,批准和其他活动的支出是非常低的。
上面的图片显示的是不精确的药物对患者的影响。但是现在的范例是随着大数据和IT的帮助下迅速变大。
大数据增加了疾病治疗的一个维度。医生现在能够更好的了解疾病,并提供一个准确的,个性化的治疗。他们也能够预测复发,并提出预防措施。
疾病综合观
大数据已经帮助医疗机构采用了360度健康问题的观点。这导致了新的发现,新的治疗计划,更加准确的诊断。数据的可用性带来了对未知的健康问题的因素的关注。例如,某些种族的基因比其他种族更容易患心脏病。现在,当一个病人代表了一个种族患有心脏病,就到了该检查那些抱怨心脏问题的同一种族的病人的数据。它有助于了解这些患者的饮食习惯,生活方式,遗传结构,家庭基因,蛋白质,代谢产物,细胞,组织,器官,生物和生态系统。
预测疾病
这是第一次改变,当一个病人被治疗,医疗结构能够获得大量的有意义的关于病人的数据。这些数据可以用来预测疾病的复发,具有一定的精确度。例如,一个病人中风,医院有关于中风时间的数据,在多种中风情况下与上一次中风的间隔,影响中风的事件,例如心理的压力事件或沉重的体力劳动。医院可以提供明确的步骤以防止基于数据上的中风。
可穿戴设备
即使没有明显的症状,可穿戴设备在检测潜在的健康问题上可以完成一个出色的工作,为了评估一个明显健康的人,医生需要进行一系列漫长又昂贵的医疗检查。可穿戴设备基于医生做出的某些结论以及决定未来的诊断显示一些健康的指标。一些可穿戴设备和应用程序已经能够测量你的心率,脉搏,血糖水平和热量水平等参数。虽然目前大部分的设备被用于娱乐目的,他们正转变成严肃的小工具。美国食品药品管理局已经批准了一系列的血糖检测仪。
大数据对个性化医学的影响
专家认为,大数据将增加个人药物的显著疗效。一些倡议正在进行中,以提高个人药品的有效性。
一个这样的倡议已经被癌症研究计划被称为NIC分子分析试验的治疗选择。这项试验是国家健康研究所的精密医学研究所的一个重要组成部分。将主动招收约1000人以及匹配特定类型的肿瘤的特异性药物。那些注册的人拥有没有回应标准癌症治疗的肿瘤。这些肿瘤与已知的药物相匹配,能在某些遗传标记的基础上产生更好的结果。基于这种匹配的结果,将创建一个数据库的药物,因此,一个有效的相应肿瘤的已知的药物列表是可用的。这是一个正在进行的类型,新的肿瘤将被研究并且相应的药物将被识别。该试验有可能解开罕见的秘密以及致命的癌症类型通过与正确的药物匹配个体的基因组。任何类型的癌症患者都有资格登记试验,虽然项目目标是至少有25%的患者患有罕见的癌症。有一系列的参数来评估药物是否正在工作。一个参数是观察肿瘤的大小是否在缩小,第二个参数是过去六个月内患者病情是否在恶化。研究人员还将考虑到治疗的副作用。
结果,精密医学得到了巨大的普及和来自所有部门的应用。美国还宣布了一项215,000,000美元的国家高精度医学倡议(自然)。它将包括建立一个国家遗传数据库,以及在美国一百万人的其他数据。
上述图像显示了如何启用个性化医疗保健
毫无疑问,大数据可以彻底改变医疗保健和个性化药品。然而,整个世界的普及速度仍然很慢,而且并不统一。大数据在全球医疗保健有着潜在显著的必不可少的费用。因为大数据的采用代表了一种模范式的转变,在某些方面已经出现了阻力。但随着效益变得更加明显,采用将变得更为顺畅。大数据最大的潜力在于为被疾病威胁的生命寻找药物。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07