京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在医学上的影响是什么?
大数据已经重新定义了如何提供医疗保健。这并不是说,现有的医疗保健系统正在被丢弃,但某些重大变化正发生在根本性的领域。有些变化是值的注意的:医疗机构正越来越依赖于数据去建立定制化,个性化的治疗模式。重点是收集患者的健康数据,并根据数据,预测疾病的发病以便采取预防措施。这些数据也帮助医生获得病人健康的360度视图。大数据补充了现有的医疗保健系统。
在大数据被引入到医疗保健系统之前,数据的作用是有限的。医院将收集病人的数据,如姓名,年龄,疾病描述,糖尿病档案,医疗报告和家庭病史,那些适用的。这样的数据提供了一个约束病人健康问题的视图。例如,对于一个被诊断患有心脏病的患者来说,典型的信息就是家庭病史,饮食,征兆,年龄和其他疾病。虽然这些信息提供了详细的疾病,数据是无法提供其他角度的问题。还有其他可能会出现的更好的治疗方法去看待这些问题。
发表在自然杂志上的统计,显示了在美国帮助一小部分(<25%)患者的最高收入的十个处方药。对于胆固醇药物,成功率只有2%的患者。因此,成功的概率相比研究,批准和其他活动的支出是非常低的。
上面的图片显示的是不精确的药物对患者的影响。但是现在的范例是随着大数据和IT的帮助下迅速变大。
大数据增加了疾病治疗的一个维度。医生现在能够更好的了解疾病,并提供一个准确的,个性化的治疗。他们也能够预测复发,并提出预防措施。
疾病综合观
大数据已经帮助医疗机构采用了360度健康问题的观点。这导致了新的发现,新的治疗计划,更加准确的诊断。数据的可用性带来了对未知的健康问题的因素的关注。例如,某些种族的基因比其他种族更容易患心脏病。现在,当一个病人代表了一个种族患有心脏病,就到了该检查那些抱怨心脏问题的同一种族的病人的数据。它有助于了解这些患者的饮食习惯,生活方式,遗传结构,家庭基因,蛋白质,代谢产物,细胞,组织,器官,生物和生态系统。
预测疾病
这是第一次改变,当一个病人被治疗,医疗结构能够获得大量的有意义的关于病人的数据。这些数据可以用来预测疾病的复发,具有一定的精确度。例如,一个病人中风,医院有关于中风时间的数据,在多种中风情况下与上一次中风的间隔,影响中风的事件,例如心理的压力事件或沉重的体力劳动。医院可以提供明确的步骤以防止基于数据上的中风。
可穿戴设备
即使没有明显的症状,可穿戴设备在检测潜在的健康问题上可以完成一个出色的工作,为了评估一个明显健康的人,医生需要进行一系列漫长又昂贵的医疗检查。可穿戴设备基于医生做出的某些结论以及决定未来的诊断显示一些健康的指标。一些可穿戴设备和应用程序已经能够测量你的心率,脉搏,血糖水平和热量水平等参数。虽然目前大部分的设备被用于娱乐目的,他们正转变成严肃的小工具。美国食品药品管理局已经批准了一系列的血糖检测仪。
大数据对个性化医学的影响
专家认为,大数据将增加个人药物的显著疗效。一些倡议正在进行中,以提高个人药品的有效性。
一个这样的倡议已经被癌症研究计划被称为NIC分子分析试验的治疗选择。这项试验是国家健康研究所的精密医学研究所的一个重要组成部分。将主动招收约1000人以及匹配特定类型的肿瘤的特异性药物。那些注册的人拥有没有回应标准癌症治疗的肿瘤。这些肿瘤与已知的药物相匹配,能在某些遗传标记的基础上产生更好的结果。基于这种匹配的结果,将创建一个数据库的药物,因此,一个有效的相应肿瘤的已知的药物列表是可用的。这是一个正在进行的类型,新的肿瘤将被研究并且相应的药物将被识别。该试验有可能解开罕见的秘密以及致命的癌症类型通过与正确的药物匹配个体的基因组。任何类型的癌症患者都有资格登记试验,虽然项目目标是至少有25%的患者患有罕见的癌症。有一系列的参数来评估药物是否正在工作。一个参数是观察肿瘤的大小是否在缩小,第二个参数是过去六个月内患者病情是否在恶化。研究人员还将考虑到治疗的副作用。
结果,精密医学得到了巨大的普及和来自所有部门的应用。美国还宣布了一项215,000,000美元的国家高精度医学倡议(自然)。它将包括建立一个国家遗传数据库,以及在美国一百万人的其他数据。
上述图像显示了如何启用个性化医疗保健
毫无疑问,大数据可以彻底改变医疗保健和个性化药品。然而,整个世界的普及速度仍然很慢,而且并不统一。大数据在全球医疗保健有着潜在显著的必不可少的费用。因为大数据的采用代表了一种模范式的转变,在某些方面已经出现了阻力。但随着效益变得更加明显,采用将变得更为顺畅。大数据最大的潜力在于为被疾病威胁的生命寻找药物。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23