
使用R语言实现数据分段
今天跟大家讲讲我工作中用到的数据分段,数据分段一般在什么地方会使用到呢?评分。之前写过一篇《实战: RFM》模型使用,那篇文章就详细介绍了CRM(客户关系管理)分析中关于RFM的应用。应用中就提到如何对R(最近一次消费距当前的时间间隔)、F(时间段内的消费频次)和M(时间段内的消费总额)指标进行分段,形成三种得分指标,最后根据得分指标计算出每个用户的总得分,从而可以计算用户的价值高低。
本文与之前提到的文章不同之处在于脚本的更改,使脚本更具灵活性。《实战: RFM模型使用》文中对R、F和M分段使用for循环,而且需要对每一个指标做循环,如果某个数据框的字段非常多,这样用for循环就显得非常麻烦。所以就有必要写一段更灵活的连续变量分段操作的R脚本。这里用案例说明一下数据分段操作:
#随机参数一列会员的消费总额
set.seed(1234)
Money <- c(round(runif(n = 5000, min = 56, max = 9143)), round(rnorm(n = 5000, mean = 892, sd = 23)))
#使用《实战: RFM模型使用》的分段方法,这里分成10段,尽量保证每段中的数据量大致相当
library(Hmisc)
#使用cut2()函数对数据进行分段
M_X <- cut2(x = Money, g = 10, onlycuts = TRUE)
#使用for循环将每一段范围值设定一个评分,即1:10分
M_score <- 0
for(i in 1:10) {
M_score[Money >= M_X[i] & Money < M_X[i+1]] = i
#由于范围Money < M_X[i+1]不包含最后一个值,故另外计算
M_score[Money == M_X[11]] = 10
}
table(M_score)
通过上面的方法,可以将连续型数据分成n段,从案例返回的结果可知,10段中的样本量基本相当,可以视作分段成功。下面再看看自定义函数实现的分段:
#自定义得分函数,x为目标向量,g为所需分段数量
Score_function <- function(x,g = 10){
require(Hmisc)
#计算分段的切割点
cuts <- cut2(x,g = g, onlycuts = TRUE)
#将所需结果存放在res数据框中
res <- data.frame(x=x, cut = cut2(x, cuts = cuts),score = as.numeric(cut2(x, cuts = cuts)))
#这里返回res数据框中的评分字段
return(res[,'score'])
}
M_score2 <- Score_function(x = Money, g = 10)
table(M_score2)
同样,分段的结果与《实战: RFM模型使用》脚本的结果一致,这里说一下自定义函数的优势:
1)可以灵活的更改分组数量,即g参数
2)不需要循环,速度得到提升
3)可以结合sapply()函数,应用于大型数据框(高维数据),从而避免对每个字段都计算一次for循环
下面创建一个数据框,来验收一下自定义函数的效果:
set.seed(1234)
x1 <- round(rnorm(n = 5000, mean = 125, sd = 30))
x2 <- round(runif(n = 5000, min = 10, max = 100))
x3 <- round(runif(n = 5000, min = 100, max = 1000))
x4 <- round(rnorm(n = 5000, mean = 100, sd = 10))
df <- data.frame(x1 = x1, x2 = x2, x3 = x3, x4 = x4)
#结合sapply()函数
df2 <- sapply(df, Score_function)
head(df2)
df2 <- as.data.frame(df2)
table(df2$x1);table(df2$x2);table(df2$x3);table(df2$x4)
如果使用《实战: RFM模型使用》的方法,4个变量需要单独拿出来做4次for循环。如果你觉得还可以再套一个循环,这样就可以不用单独4次for循环了,问题是这样做会大大降低计算效率,影响速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27