
数据产品经理的必修课:数据图表应用
图表是件花衣裳,你得懂得怎么穿!
初阶的饼图、环形图、折线图、柱形图、条形图等就不多说了,因为他们直观到无需解释。但需要提一下做这些图的时候的细节:
(可跳过不看)
首先,告别excel默认的样式和配色,因为那样会使你的报告逼格很低。
在我平时工作中,许多伙伴会问“你这图表用什么软件做的?感觉好高级?”,我说“excel啊”,他们吃惊不已。如何达到这些效果?
先仔细摸索图表布局选项卡下的坐标轴、网格线、趋势线、图例,标签等功能细节;其次是熟悉绘图区格式里面的细节,如调整图表区域的配色,合理使用阴影等;最后是选择合适的图表来反映问题,这一点其实相当复杂,在后续的文章中会循序渐进地提及(结合一些场景),一股脑地说,我写得辛苦你读的累,划不来。
推荐一本刘万祥的《Excel图表之道》,它会让你惊叹于excel作图功能是如此的强大。
进入主题:强大的散点图
首先,散点图确实能很直观的反应两个变量之间的关系。
案例一:利用散点图观察不同来源流量与网站总流量的关系。
上图展示了某公司主站的新访客各来源渠道与总新访客量。
结论很直观:
direct(直接访问来源)、organic(自然搜索来源)和总的新访客有明显的正相关关系(direct与newuv相关系数达到0.89,direct来源的占比达到60%)。因此,我们知道这个公司大部分访客来源于口碑,而且其潜力还相当大,因为direct和organic图显示新访客对direct的弹性比较高,没有出现像sem(蓝色)图那样的边际效益递减的情况。
(一些名词解释我会在文章最后列出)
通过组合型散点图,我们已经得到了一些有价值的信息。我个人对sem来源的变化趋势非常感兴趣。针对这点我们继续挖掘信息。
案例二:在散点图上用颜色增加一个分析维度,并添加平滑趋势线。
图中,我将sem来源的访问量按四分位数进行了分层,配合局部加权多项式拟合线。
似乎又有了新的收获:
1.sem来源流量较少时(红色和绿色,后50%),与总流量的正相关关系是比较明显的。
2.sem来源流量在75%到50%分位数(绿色)之间非常集中。我猜测,使sem流量维持在这个水平的投放策略,看来是有一种粘性的,即便加大投放,在一定幅度内,sem的流量增长也不明显,直到突破某个临界值,进入蓝色和紫色区域后,才会松开。
3.较高sem流量(蓝色和紫色,前50%),与总流量的关系非常弱,拟合线几乎平了。
到这里,您可能会这么问:sem流量在什么程度才是最优?
要衡量这个问题,我选取了sem投放总成本,sem单位点击成本(cpc),和sem来源的注册转化率三个指标。让可爱的散点图升级!
气泡图,就是除了横纵坐标轴,点的大小还能衡量一个变量的散点图。上图不仅衡量了sem投放总成本(semCOST)和sem来源流量(semUV),还用点的大小衡量注册转化率(regRate)。结论比较直观,注册转化率高的点,在右上方,且预测线显示,投放力度越大,流量越大,且注册转化率至少不变。
得到这个结论有点振奋了,有没有?
还能不能再增加点信息?可以,我们将单位点击成本进一步放到散点图中。
案例四:气泡的颜色再衡量一个变量,升级为彩色气泡图
如图,点的大小是注册转化率,点的颜色是单位点击成本,从暖色调到冷色调,由低到高。转化率高且cpc低的点,在右上角。
我们可以说,sem投放成本越高,sem流量越多,且转化率越高,更可喜的是cpc还更低。对于一个sem投放部门来说,没有比这更完美的结论了。
但是,散点图只是反映了相关关系,并不是因果关系。我们不能说,增加sem投放是注册转化率升高且cpc降低的原因。但是,有这么显著的相关关系,我们就有足够的理由去增加投放,然后再去观察数据。
数据分析再精确,如果缩手缩脚,是依然办不成事情的。
当然,投放策略分析是可以做得非常复杂的,我们这里只是为了介绍散点图而引入了这个场景,初步地做个分析。但在中小企业,我觉得做到这一步就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25