
闲暇的时候,我最喜欢去书店“游览”。书的内容姑且不说,光是花花绿绿的封面,就常引我流连忘返。这一次,两本书的封面格外吸引我的眼球。
一个封面的图案是一只跳舞的大象,前腿腾空,竖直向上的长鼻子冒出五颜六色的电线(导线),书名是《大数据——一场即将改变我们生活、工作和思维方式的革命》。另一个封面的图案是英国画家约瑟夫·怀特画于1766年的一幅油画,画面内容是一位哲学家正在讲解太阳系,讲解人严肃认真,听众神情专注,代替太阳的烛光将两名求知儿童的脸庞照得亮堂堂,书名是《启蒙思想——为什么它依然重要》。
《大数据》的封面构图是说,数字化时代的数据非常大,大得就像动物世界的一头大象。而大象却要翩翩起舞,预示着一场数据化革命即将到来。《启蒙思想》的封面通俗易懂,日心说推翻了地心说,启蒙思想恰似普照大地的阳光,引导人们走向光明。
2008年世界经济危机爆发后,全球经济时好时坏,蹒跚跌撞地折腾到现在。有人说,5年来,世界经济犹如在黑暗中跋涉,偶现曙光却转瞬即逝。全世界人民都很焦急,盼望新经济模式助推经济发展。现在,大数据喧嚣登场了,似乎可以将世界经济引出黑暗。
什么是大数据?《大数据》一书未能给出确切定义。我以为,从本质上讲,大数据首先指的是数据的数量大(VOLUME)。2013年,世界存储的数字化数据将达1.2泽字节。这么大的数据究竟有多大?形象一点说,如果把这些数据印成书,一本挨一本平铺,可覆盖52个美国;若刻成光盘且将之垒成5堆,那么,5根光盘“通天柱”可直达月球。
大数据的第二个特点,是数据的增长速度快(VELOCITY)。德国发明家古登堡1439年发明铅字印刷后,欧洲第一次出现了信息爆炸。美国历史学家伊丽莎白·爱森斯坦研究发现,1453年-1503年的50年间,欧洲约印刷了800万本书,超过了之前欧洲所有手抄书的总和。也就是说,欧洲的信息储量用50年翻了1倍。而现在,美国信息专家马丁·希尔伯特说,数字数据储量每3年就会翻1倍。人类存储信息的速度比世界经济的增长速度快4倍。
当然,大数据还具备如下3个容易理解的特点:种类多(VARIETY)、准确(VERACITY)和价值(VALUE)。
在世界经济苦难挣扎之时,许多聪明的商家把目光瞄上了具备上述“5V”特征的大数据。他们认为,世界储存的数据虽然庞大,但其已被利用的价值只有一小部分。如果转变思维方法,将这些数据重新组合和处理,其潜在价值之大难以估量。
比如说,美国社交网站脸书(FACEBOOK)有10亿用户,网站对这些用户信息进行分析分类后,广告商可根据分析结果精准投放广告。因此,对广告商而言,脸书10亿用户的数据信息值1000亿美元。
另有分析显示,2012年,运用大数据的世界贸易额已达60亿美元。2016年,这个数字预计将达200亿美元。
既然重新处理数据能赚钱,一些具有用户信息优势的公司,如谷歌、微软等,都会尽其所能搜集其需要的信息。这样,至少有两个问题已凸显了出来。一个是如何保护个人隐私问题。奥美公关公司最近公布的一份调查报告显示,75%的人不希望企业存储自己的个人信息,90%的人反对企业收集自己上网浏览网页的记录。另一个是如何防止信息垄断问题。由于谷歌、微软等公司用户数量上的绝对优势,它们占有的用户信息也就占有绝对优势,再加上这些公司还有信息储存、传输和分析技术上的优势,它们也就很容易垄断数据贸易市场。
近年来,欧盟一直在调查微软和谷歌在侵犯个人隐私和信息垄断方面的问题。如果指控被证实,这两家公司将面临重罚。其他国家也应向欧盟学习,提前从速立法,以规范可能日益繁荣的数据贸易。
从经济角度讲,大数据及其产业链到底能带来多大效益,现在还不好估量。但有一点可以肯定,即使大数据可以引领某个行业暂时繁荣,也可以成就许多亿万富翁,但却不能从根本上扭转目前世界经济的颓势。因为,从根儿上讲,大数据充其量是一次如何充分利用现有数据的思维转换,而非彻底改变经济模式的“大思想”。
什么是“大思想”?我以为,凡是构成某一行业从无到有之基础的思想,就是“大思想”。比如说,德国启蒙思想家莱布尼茨曾写过《1与0,一切数字的神奇渊源》一文,从而发明了二进制。没有二进制,很难想象会出现现在的计算机和数字化;没有计算机和数字化,又怎能出现IT行业和大数据呢?
再比如,英国启蒙思想家亚当·斯密1776年发表《国富论》一书。可以说,没有斯密倡导的“看不见的手”,很难想象会有现代自由市场经济;没有自由市场经济,人类的物质生活水平就很难发展到目前的富裕程度。英国史学家巴克勒在《文明史》一书中说:“从人类财富创造的角度看,斯密超过了所有政治家。”
要想医治当前世界经济的病态,大数据之类的思维变换或许在治标上能起一定作用。但要治本,还需催生科技创新的“大思想”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15