京公网安备 11010802034615号
经营许可证编号:京B2-20210330
闲暇的时候,我最喜欢去书店“游览”。书的内容姑且不说,光是花花绿绿的封面,就常引我流连忘返。这一次,两本书的封面格外吸引我的眼球。
一个封面的图案是一只跳舞的大象,前腿腾空,竖直向上的长鼻子冒出五颜六色的电线(导线),书名是《大数据——一场即将改变我们生活、工作和思维方式的革命》。另一个封面的图案是英国画家约瑟夫·怀特画于1766年的一幅油画,画面内容是一位哲学家正在讲解太阳系,讲解人严肃认真,听众神情专注,代替太阳的烛光将两名求知儿童的脸庞照得亮堂堂,书名是《启蒙思想——为什么它依然重要》。
《大数据》的封面构图是说,数字化时代的数据非常大,大得就像动物世界的一头大象。而大象却要翩翩起舞,预示着一场数据化革命即将到来。《启蒙思想》的封面通俗易懂,日心说推翻了地心说,启蒙思想恰似普照大地的阳光,引导人们走向光明。
2008年世界经济危机爆发后,全球经济时好时坏,蹒跚跌撞地折腾到现在。有人说,5年来,世界经济犹如在黑暗中跋涉,偶现曙光却转瞬即逝。全世界人民都很焦急,盼望新经济模式助推经济发展。现在,大数据喧嚣登场了,似乎可以将世界经济引出黑暗。
什么是大数据?《大数据》一书未能给出确切定义。我以为,从本质上讲,大数据首先指的是数据的数量大(VOLUME)。2013年,世界存储的数字化数据将达1.2泽字节。这么大的数据究竟有多大?形象一点说,如果把这些数据印成书,一本挨一本平铺,可覆盖52个美国;若刻成光盘且将之垒成5堆,那么,5根光盘“通天柱”可直达月球。
大数据的第二个特点,是数据的增长速度快(VELOCITY)。德国发明家古登堡1439年发明铅字印刷后,欧洲第一次出现了信息爆炸。美国历史学家伊丽莎白·爱森斯坦研究发现,1453年-1503年的50年间,欧洲约印刷了800万本书,超过了之前欧洲所有手抄书的总和。也就是说,欧洲的信息储量用50年翻了1倍。而现在,美国信息专家马丁·希尔伯特说,数字数据储量每3年就会翻1倍。人类存储信息的速度比世界经济的增长速度快4倍。
当然,大数据还具备如下3个容易理解的特点:种类多(VARIETY)、准确(VERACITY)和价值(VALUE)。
在世界经济苦难挣扎之时,许多聪明的商家把目光瞄上了具备上述“5V”特征的大数据。他们认为,世界储存的数据虽然庞大,但其已被利用的价值只有一小部分。如果转变思维方法,将这些数据重新组合和处理,其潜在价值之大难以估量。
比如说,美国社交网站脸书(FACEBOOK)有10亿用户,网站对这些用户信息进行分析分类后,广告商可根据分析结果精准投放广告。因此,对广告商而言,脸书10亿用户的数据信息值1000亿美元。
另有分析显示,2012年,运用大数据的世界贸易额已达60亿美元。2016年,这个数字预计将达200亿美元。
既然重新处理数据能赚钱,一些具有用户信息优势的公司,如谷歌、微软等,都会尽其所能搜集其需要的信息。这样,至少有两个问题已凸显了出来。一个是如何保护个人隐私问题。奥美公关公司最近公布的一份调查报告显示,75%的人不希望企业存储自己的个人信息,90%的人反对企业收集自己上网浏览网页的记录。另一个是如何防止信息垄断问题。由于谷歌、微软等公司用户数量上的绝对优势,它们占有的用户信息也就占有绝对优势,再加上这些公司还有信息储存、传输和分析技术上的优势,它们也就很容易垄断数据贸易市场。
近年来,欧盟一直在调查微软和谷歌在侵犯个人隐私和信息垄断方面的问题。如果指控被证实,这两家公司将面临重罚。其他国家也应向欧盟学习,提前从速立法,以规范可能日益繁荣的数据贸易。
从经济角度讲,大数据及其产业链到底能带来多大效益,现在还不好估量。但有一点可以肯定,即使大数据可以引领某个行业暂时繁荣,也可以成就许多亿万富翁,但却不能从根本上扭转目前世界经济的颓势。因为,从根儿上讲,大数据充其量是一次如何充分利用现有数据的思维转换,而非彻底改变经济模式的“大思想”。
什么是“大思想”?我以为,凡是构成某一行业从无到有之基础的思想,就是“大思想”。比如说,德国启蒙思想家莱布尼茨曾写过《1与0,一切数字的神奇渊源》一文,从而发明了二进制。没有二进制,很难想象会出现现在的计算机和数字化;没有计算机和数字化,又怎能出现IT行业和大数据呢?
再比如,英国启蒙思想家亚当·斯密1776年发表《国富论》一书。可以说,没有斯密倡导的“看不见的手”,很难想象会有现代自由市场经济;没有自由市场经济,人类的物质生活水平就很难发展到目前的富裕程度。英国史学家巴克勒在《文明史》一书中说:“从人类财富创造的角度看,斯密超过了所有政治家。”
要想医治当前世界经济的病态,大数据之类的思维变换或许在治标上能起一定作用。但要治本,还需催生科技创新的“大思想”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27