
移动营销,为什么小数据反而比大数据更有用?
我们在谈论移动互联网的时候,总是赋予了它太多的想象力。但对绝大多数移动用户来说,手机在生活中的地位是一个工具的集 合,人们使用手机的自然行为更多的是借助手机来解决日常生活中的种种琐碎。那些激情,刺激,充满了挑战,像詹姆斯邦德一样掏出手机拯救世界的情景,只会出 现在电影和小说里。
所以,当我们观察排行在应用商店前几名的产品,几乎无一不是服务于日常生活的时候,完全不必感到惊讶。聊天应用,地图搜 索,手机安全及优化,自拍,美食和购物,这些组成了人们的生活,也占据了他们的手机主屏。更重要的是这个规律具备普世性,观察全球各主要地区的应用市场, 你会发现几乎所有排行榜的前十名都是被这些基础的工具和产品所占据的。
也难怪有人会说,未来谁与普通人的生活越贴近,谁就越有机会成功。
手机用户每天都在使用这些应用,每一次的互动都会产生体量庞大的数据资料,这是大数据时代到来的契机之一。整个数字营销行业都应该很清楚数据的价值,更确切的说,是新鲜数据的价值。
但有时候,契机也是危机,大而全并不是一件好事,你反而不容易找出哪些是好数据,哪些是垃圾数据。
为了找寻数据的价值,更为了向用户提供更有价值的信息,我们需要突破目前嘈杂而不切实际的大数据环境,有能力从大而全中提取,隔离并重新审视那些微小却宝贵的信号——不如将小数据称之为“精巧数据”,而它也将是现代移动广告发展的关键钥匙。
精巧数据从何而来?
我们从一个日常的场景出发,一场简单的购物之旅。
周末,有朋友要来家中做客,对于家中的主人来说一场家庭式的聚餐不可避免。首先需要准备一份菜谱和购物清单,我们的手机 上有很多美食app,他们可以提供食谱,标记出每到菜的热量总和,向你建议如何合理的搭配膳食结构。在整个过程中,人的行为完全是日常的,自然的,而 app的可用性根植于它能否为人们提供切实可行的解决方案。
在出发之前,男主人打开了搜索工具,查询附近的大型超市有哪家在提供打折促销和商品特卖。喜欢社交的女主人趁在路上的功夫发了条朋友圈消息“新开的xxx超市刚好有新鲜的海鱼上市,出发找美食。”朋友立马点赞评论“期待周末的大餐!”
在商场里,我们的主人公们在四处扫货,这时候最不需要的就是手机弹出推送或是广告,告诉你已经好久没有登陆游戏了或是快 来看看最新的周末3日游旅行套餐。相反,消费者们更加自然的情况是,打开移动IM软件,发条微信给朋友,问问你有什么忌口,或是喜欢什么样的酒水和甜点。 然后挑选商品结账,开车回家。
在上面的小案例中我们可以看到,所有用户的自然行为都是与他所计划的活动息息相关的,而让这些行为变得简单的功臣是移动 app。纵观整个过程,用户每一次使用app工具,与他的社交网络互动,并随时更新地理位置信息时,有价值的精巧数据其实都在源源不断的产生。如果将这些 信息单独拿出来,我们可能会把它与杂讯混为一谈,但就像童话中面包屑的线索一样,厘清脉络之后,它的价值就会凸显。
精巧数据怎么用?
精巧数据对于广告的价值是极高的,最根本的原因它来自于消费者自然的生活行为。如果能够实时或近乎实时的接收并分析这些独特的,充分契合的内容和信息,带来变化将是革命性的。
例如在购物的时候,消费者的信号非常明确,在当时的场景下,他最有可能打开的广告信息,比如:搭配海鱼最合适的葡萄酒有哪些;同一家商场中,某一品牌正在发售新款的小食甜点;又或是新发布的聚会桌游已经上架。
发送给消费者的信息最理想的情况是满足当前场景的自然需求,及时而有价值的信息要比来浏览器的无关广告更为有效。同时在app内,品牌也会和消费者产生一次良性的互动,即便最后没有产生直接收入,也是一次非常不错的品牌关注的机会。
在整个购物之旅中,消费者的行为没有任何一处超出寻常的范围,这是他的日常生活,而手机是他更轻易完成这些日常任务的帮 手。为用户的自然行为提供实用性的帮助,而不要用愚蠢的内容打断他们,或是强迫他们被动的接受毫无价值和联系的信息,是这一类应用在运营和用户体验上保持 成功的关键,简言之要学会克制。
而作为媒体出版方和广告主来说,在进行商业化拓展和增加用户规模的时候,都应该注意到精巧数据的作用,以及它所透露出的 宝贵信息。未来移动营销成功的关键,应该是借助精巧数据,找到一个合适的通道,实现吸引和迎合人们自然行为的营销体验,而不是教育消费者去改变他们的习 惯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07