
一篇文章透彻解读聚类分析及案例实操(二)
4 SAS聚类分析案例
1 问题背景
考虑下面案例,一个棒球管理员希望根据队员们的兴趣相似性将他们进行分组。显然,在该例子中,没有响应变量。管理者希望能够方便地识别出队员的分组情况。同时,他也希望了解不同组之间队员之间的差异性。
该案例的数据集是在SAMPSIO库中的DMABASE数据集。下面是数据集中的主要的变量的描述信息:
在这个案例中,设置TEAM,POSITION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected,设置SALARY变量的 模型角色为rejected是由于它的信息已经存储在LOGSALAR中。在聚类分析和自组织映射图中是不需要目标变量的。如果需要在一个目标变量上识别 分组,可以考虑预测建模技术或者定义一个分类目标。
2 聚类方法概述
聚类分析经常和有监督分类相混淆,有监督分类是为定义的分类响应变量预测分组或者类别关系。而聚类分析,从另一方面考虑,它是一种无监督分类技术。 它能够在所有输入变量的基础上识别出数据集中的分组和类别信息。这些组、簇,赋予不同的数字。然而,聚类数目不能用来评价类别之间的近似关系。自组织映射 图尝试创建聚类,并且在一个图上用图形化的方式绘制出聚类信息,在此处我们并没有考虑。
1) 建立初始数据流
2) 设置输入数据源结点
打开输入数据源结点
从SAMPSIO库中选择DMABASE数据集
设置NAME变量的模型角色为id,TEAM,POSIOTION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected
探索变量的分布和描述性统计信息
选择区间变量选项卡,可以观察到只有LOGSALAR和SALARY变量有缺失值。选择类别变量选项卡,可以观察到没有缺失值。在本例中,没有涉及到任何类别变量。
关闭输入数据源结点,并保存信息。
3) 设置替代结点
虽然并不是总是要处理缺失值,但是有时候缺失值的数量会影响聚类结点产生的聚类解决方案。为了产生初始聚类,聚类结点往往需要一些完整的观测值。当缺失值太多的时候,需要用替代结点来处理。虽然这并不是必须的,但是在本例中使用到了。
4) 设置聚类结点
打开聚类结点,激活变量选项卡。K-means聚类对输入数据是敏感的。一般情况下,考虑对数据集进行标准化处理。
在变量选项卡,选择标准偏差单选框
选择聚类选项卡
观察到默认选择聚类数目的方法是自动的
关闭聚类结点
5) 聚类结果
在聚类结点处运行流程图,查看聚类结果。
6) 限定聚类数目
打开聚类结点
选择聚类选项卡
在聚类数目选择部分,点击选择标准按钮
输入最大聚类数目为10
点击ok,关闭聚类结点
7)结果解释
我们可以定义每个类别的信息,结合背景识别每个类型的特征。选择箭头按钮,
选择三维聚类图的某一类别,
在工具栏选择刷新输入均值图图标,
点击该图标,可以查看该类别的规范化均值图
同理,可以根据该方法对其他类别进行解释。
8)运用Insight结点
Insight结点可以用来比较不同属性之间的异常。打开insight结点,选择整个数据集,关闭结点。
从insight结点处运行。
变量_SEGMNT_标识类别,distance标识观测值到所在类别中心的距离。运用insight窗口的analyze工具评估和比较聚类结果。
首先把_SEGMNT_的度量方式从interval转换成nominal。
以R基础包自带的鸢尾花(Iris)数据进行聚类分析。分析代码如下:
###### 代码清单 #######
data(iris); attach(iris)
iris.hc <- hclust( dist(iris[,1:4]))
# plot( iris.hc, hang = -1)
plclust( iris.hc, labels = FALSE, hang = -1)
re <- rect.hclust(iris.hc, k = 3)
iris.id <- cutree(iris.hc, 3)
table(iris.id, Species)
###### 运行结果 #######
> table(iris.id,Species)
Species
iris.id setosa versicolor virginica
1 50 0 0
2 0 23 49
3 0 27 1
聚类分析生成的图形如下:
结果表明,函数cuttree()将数据iris分类结果iris.hc编为三组分别以1,2, 3表示,保存在iris.id中。将iris.id与iris中Species作比较发现:1应该是setosa类,2应该是virginica类(因为 virginica的个数明显多于versicolor),3是versicolor。
仍以R基础包自带的鸢尾花(Iris)数据进行K-均值聚类分析,分析代码如下:
###### 代码清单 #######
library(fpc)
data(iris)
df<-iris[,c(1:4)]
set.seed(252964) # 设置随机值,为了得到一致结果。
(kmeans <- kmeans(na.omit(df), 3)) # 显示K-均值聚类结果
plotcluster(na.omit(df), kmeans$cluster) # 生成聚类图
生成的图如下:
Python篇
Python运行条件:
1.Python运行环境与编辑环境;
2.Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。
# coding=utf-8
##
作者:Chan
程序:kmeans算法
##
import matplotlib.pyplot as plt
import math
import numpy
import random
#dotOringalNum为各个分类最初的大小
dotOringalNum=100
#dotAddNum最后测试点的数目
dotAddNum=1000
fig = plt.figure()
ax = fig.add_subplot(111)
sets=
colors=[‘b’,’g’,’r’,’y’]
#第一个分类,颜色为蓝色,在左下角
a=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(1000,3000))/100
a.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[0],linestyle=”,marker=’.’)
#a的第一个元素为a的各个元素xy值之合
a.insert(0,[txx,tyy])
sets.append(a)
#第二个分类,颜色为绿色,在右上角
b=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(4000,6000))/100
b.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[1],linestyle=”,marker=’.’)
b.insert(0,[txx,tyy])
sets.append(b)
#第三个分类,颜色为红色,在左上角
c=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(4000,6000))/100
c.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[2],linestyle=”,marker=’.’)
c.insert(0,[txx,tyy])
sets.append(c)
#第四个分类,颜色为黄色,在右下角
d=
txx=0
tyy=0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(1000,3000))/100
d.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[3],linestyle=”,marker=’.’)
d.insert(0,[txx,tyy])
sets.append(d)
#测试
for i in range(0,dotAddNum):
tx=float(random.randint(0,7000))/100
ty=float(random.randint(0,7000))/100
dist=9000.0
setBelong=0
for j in range(0,4):
length=len(sets[j])-1
centX=sets[j][0][0]/length
centY=sets[j][0][1]/length
if (centX-tx)*(centX-tx)+(centY-ty)*(centY-ty)
运行效果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10