
一篇文章透彻解读聚类分析及案例实操(二)
4 SAS聚类分析案例
1 问题背景
考虑下面案例,一个棒球管理员希望根据队员们的兴趣相似性将他们进行分组。显然,在该例子中,没有响应变量。管理者希望能够方便地识别出队员的分组情况。同时,他也希望了解不同组之间队员之间的差异性。
该案例的数据集是在SAMPSIO库中的DMABASE数据集。下面是数据集中的主要的变量的描述信息:
在这个案例中,设置TEAM,POSITION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected,设置SALARY变量的 模型角色为rejected是由于它的信息已经存储在LOGSALAR中。在聚类分析和自组织映射图中是不需要目标变量的。如果需要在一个目标变量上识别 分组,可以考虑预测建模技术或者定义一个分类目标。
2 聚类方法概述
聚类分析经常和有监督分类相混淆,有监督分类是为定义的分类响应变量预测分组或者类别关系。而聚类分析,从另一方面考虑,它是一种无监督分类技术。 它能够在所有输入变量的基础上识别出数据集中的分组和类别信息。这些组、簇,赋予不同的数字。然而,聚类数目不能用来评价类别之间的近似关系。自组织映射 图尝试创建聚类,并且在一个图上用图形化的方式绘制出聚类信息,在此处我们并没有考虑。
1) 建立初始数据流
2) 设置输入数据源结点
打开输入数据源结点
从SAMPSIO库中选择DMABASE数据集
设置NAME变量的模型角色为id,TEAM,POSIOTION,LEAGUE,DIVISION和SALARY变量的模型角色为rejected
探索变量的分布和描述性统计信息
选择区间变量选项卡,可以观察到只有LOGSALAR和SALARY变量有缺失值。选择类别变量选项卡,可以观察到没有缺失值。在本例中,没有涉及到任何类别变量。
关闭输入数据源结点,并保存信息。
3) 设置替代结点
虽然并不是总是要处理缺失值,但是有时候缺失值的数量会影响聚类结点产生的聚类解决方案。为了产生初始聚类,聚类结点往往需要一些完整的观测值。当缺失值太多的时候,需要用替代结点来处理。虽然这并不是必须的,但是在本例中使用到了。
4) 设置聚类结点
打开聚类结点,激活变量选项卡。K-means聚类对输入数据是敏感的。一般情况下,考虑对数据集进行标准化处理。
在变量选项卡,选择标准偏差单选框
选择聚类选项卡
观察到默认选择聚类数目的方法是自动的
关闭聚类结点
5) 聚类结果
在聚类结点处运行流程图,查看聚类结果。
6) 限定聚类数目
打开聚类结点
选择聚类选项卡
在聚类数目选择部分,点击选择标准按钮
输入最大聚类数目为10
点击ok,关闭聚类结点
7)结果解释
我们可以定义每个类别的信息,结合背景识别每个类型的特征。选择箭头按钮,
选择三维聚类图的某一类别,
在工具栏选择刷新输入均值图图标,
点击该图标,可以查看该类别的规范化均值图
同理,可以根据该方法对其他类别进行解释。
8)运用Insight结点
Insight结点可以用来比较不同属性之间的异常。打开insight结点,选择整个数据集,关闭结点。
从insight结点处运行。
变量_SEGMNT_标识类别,distance标识观测值到所在类别中心的距离。运用insight窗口的analyze工具评估和比较聚类结果。
首先把_SEGMNT_的度量方式从interval转换成nominal。
以R基础包自带的鸢尾花(Iris)数据进行聚类分析。分析代码如下:
###### 代码清单 #######
data(iris); attach(iris)
iris.hc <- hclust( dist(iris[,1:4]))
# plot( iris.hc, hang = -1)
plclust( iris.hc, labels = FALSE, hang = -1)
re <- rect.hclust(iris.hc, k = 3)
iris.id <- cutree(iris.hc, 3)
table(iris.id, Species)
###### 运行结果 #######
> table(iris.id,Species)
Species
iris.id setosa versicolor virginica
1 50 0 0
2 0 23 49
3 0 27 1
聚类分析生成的图形如下:
结果表明,函数cuttree()将数据iris分类结果iris.hc编为三组分别以1,2, 3表示,保存在iris.id中。将iris.id与iris中Species作比较发现:1应该是setosa类,2应该是virginica类(因为 virginica的个数明显多于versicolor),3是versicolor。
仍以R基础包自带的鸢尾花(Iris)数据进行K-均值聚类分析,分析代码如下:
###### 代码清单 #######
library(fpc)
data(iris)
df<-iris[,c(1:4)]
set.seed(252964) # 设置随机值,为了得到一致结果。
(kmeans <- kmeans(na.omit(df), 3)) # 显示K-均值聚类结果
plotcluster(na.omit(df), kmeans$cluster) # 生成聚类图
生成的图如下:
Python篇
Python运行条件:
1.Python运行环境与编辑环境;
2.Matplotlib.pyplot图形库,可用于快速绘制2D图表,与matlab中的plot命令类似,而且用法也基本相同。
# coding=utf-8
##
作者:Chan
程序:kmeans算法
##
import matplotlib.pyplot as plt
import math
import numpy
import random
#dotOringalNum为各个分类最初的大小
dotOringalNum=100
#dotAddNum最后测试点的数目
dotAddNum=1000
fig = plt.figure()
ax = fig.add_subplot(111)
sets=
colors=[‘b’,’g’,’r’,’y’]
#第一个分类,颜色为蓝色,在左下角
a=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(1000,3000))/100
a.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[0],linestyle=”,marker=’.’)
#a的第一个元素为a的各个元素xy值之合
a.insert(0,[txx,tyy])
sets.append(a)
#第二个分类,颜色为绿色,在右上角
b=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(4000,6000))/100
b.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[1],linestyle=”,marker=’.’)
b.insert(0,[txx,tyy])
sets.append(b)
#第三个分类,颜色为红色,在左上角
c=
txx=0.0
tyy=0.0
for i in range(0,dotOringalNum):
tx=float(random.randint(1000,3000))/100
ty=float(random.randint(4000,6000))/100
c.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[2],linestyle=”,marker=’.’)
c.insert(0,[txx,tyy])
sets.append(c)
#第四个分类,颜色为黄色,在右下角
d=
txx=0
tyy=0
for i in range(0,dotOringalNum):
tx=float(random.randint(4000,6000))/100
ty=float(random.randint(1000,3000))/100
d.append([tx,ty])
txx+=tx
tyy+=ty
#ax.plot([tx],[ty],color=colors[3],linestyle=”,marker=’.’)
d.insert(0,[txx,tyy])
sets.append(d)
#测试
for i in range(0,dotAddNum):
tx=float(random.randint(0,7000))/100
ty=float(random.randint(0,7000))/100
dist=9000.0
setBelong=0
for j in range(0,4):
length=len(sets[j])-1
centX=sets[j][0][0]/length
centY=sets[j][0][1]/length
if (centX-tx)*(centX-tx)+(centY-ty)*(centY-ty)
运行效果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07