京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对大数据分析错误认识那么多 舍恩伯格你知道吗?
随着大数据时代的到来,很多人对大数据产生了浓厚的兴趣,然而,大数据只是一个新概念,很多认识都是不正确的。
大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。大数据分析拥有自身的特点,与计量经济学既有区别又有联系。当前对大数据的分析存在许多流行观点,但其中很多核心观点都值得商榷。
大数据产生的背景是整个社会走向数字化,特别是社交网络和各种传感设备的发展。云计算和搜索引擎的发展,使得对大数据的高效分析成为可能,核心问题是如何在种类繁多、数量庞大的数据中快速获取有价值信息。大数据在社会分析、科学发现和商业决策中的作用越来越大,金融只是其中的一个应用领域。
什么是大数据
大数据是一个新概念,英文中至少有三个名称:大数据(big data)、大尺度数据(big scale data)和大规模数据(massive data),至今未形成统一定义。但一般认为大数据具有四个基本特征(即所谓4V特征):数据体量庞大(volume)、价值密度低(value, 也有人理解成应用价值巨大)、来源广泛和特征多样(variety)、增长速度快(velocity, 也有人理解成需要高速分析能力)。
从学术角度,对大数据的讨论基本属于数据科学(Data Science)和数据挖掘(Data Mining)的范畴。
对大数据分析的主流误解
舍恩伯格与合作者的《大数据时代》非常流行,但里面的很多核心观点都值得商榷。
第一,他们认为,大数据分析不是针对随机样本,而是全体数据。尽管数据收集和分析手段足够发达后,对全部数据的收集和分析成为可能,但从成本收益上衡量,这样做不是总有必要。根据中心极限定理,统计分析质量与样本数量之间存在平方根关系。比如,样本数量提高100倍,分析质量提高10倍。而统计分析工作量与样本数量之间存在线性关系。比如,样本数量提高100倍,存储和计算量一般增加100倍。这样,样本数量增长到一定程度后,新增工作量对应的成本就会超过质量提高产生的好处。因此,通过科学设计的抽样调查获得有代表性的样本,在大数据分析中仍有价值。
第二,他们还认为,大数据分析不是因果关系,而是相关关系。这个说法在统计学中是老生常谈,不是什么新观点。统计学基于相关关系,只能被用来证伪因果关系,而不能被用来证实因果关系。大数据分析的基础理论也是概率论和数理统计,从根本上就属于相关关系的范畴。
第三,大数据分析也不是万能的。基于大数据的预测可以抽象表述为:用 表示已知信息,用 表示未知信息,寻找关于 的函数 作为 的预测。预测误差是 ,用 (类似于均方误差)来衡量预测效果。概率论有一个基本结论:
对任意 ,总有 ,其中等号仅当时才成立,所以 也被称为最佳预测(best predictor)。
可以看出两点结论:首先,大数据分析中,各种算法的核心任务是使 尽可能接近理论上的最优预测 ;其次,即使在最优预测上, 代表的预测误差仍不能被消除,是内生于信息结构的。比如,即使信息技术非常发达,如果现实世界中仍有部分信息不能被数字化(从而不能用在大数据分析中),这部分被“尘封”的信息就决定了大数据分析的有效边界。
第四,大数据能降低信息不对称的程度,但不能消除随机性(不确定性);有助于评估风险(未来遭受损失的可能性,其中损失分布可计量),但不能消除奈特式不确定性(其中损失分布不可计量)。
大数据毕竟是一个新生儿,人们对它的认识会经历一个由误解到正确认识的过程,对于舍恩伯格而言,他关于大数据的一些观点,也有很多值得商榷的地方,毕竟理论需要实践来检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11