京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		数据分析应从数据积累做起
“不会酿酒,也能成为好的品酒师。”在IBM数据分析沙龙中,AsiaAnalytics首席执行官莫利伟通过品酒师的事例,说明企业应该如何正确进行数据分析,为大数据的应用作准备。作为一个企业的管理者,并不需要成为数据分析的天才或科学家,但需要将自己站在一个消费者的立场,体验、并理解数据分析带来的作用,从而更好地利用数据分析,实现最佳的收益。
	
以上来自于8月23日的IBM数据分析沙龙中。IBM软件部智慧商务技术总监杨旭青先生和AsiaAnalytics首席执行官莫利伟Olivier Maugain先生从IBM智慧商务、数据分析及大数据等方面,与记者一起分享目前企业数据分析的策略及重点方向。
对于大数据,IBM软件部智慧商务技术总监杨旭青先生首先从IBM软件部门中智慧商务的业务,带来IBM的观点。在IBM的智慧商务就是利用“大数据”进行分析、处理数据,形成一个完整的价值链,包括企业采购、营销、服务及销售多个方面。
一般我们理解的“大数据”,往往存在于电子商务方面,最典型的代表就是电子商务网站。消费者在购买相关商品后,系统会自动推送相关产品,也就是所谓的“猜你喜欢”。但有时会常常出现一大堆已经购买过的类似商品,并不会促进二次消费,有时候可能会出现更为便宜,更好的商品,给购买者带来负面感受,影响购物体验。所以IBM认为,企业不应该将数据分析局限于营销方面,首先要捕获客户行为,然后把客户分群。然后是长期的客户行为分析,而且是大量的客户行为分析,从而推测客人在购买过一件商品后,之后可能购买动向。所以不能单单从营销的角度考虑,只一味推荐雷同的商品。
除了针对营销部门的数据分析外,IBM对于企业内部的管理也有相应的解决办法,也是非常重要的部分。首先就是一些零售客户最为关心的订单管理,目的就在于与生产和库存紧密结合,可以提前预知客户群的数量、类型,需要生产多少的量,以及库存量等,以避免风险及浪费。正如一些电商企业,肯定有线上的交易平台和线下的仓储,经过数据分析,就能预测订单,以缩短整个周期,从管理、运营商获得较大的收益。对于订单管理,杨旭青先生又以全球服饰品牌ZARA的案例,进一步阐述。正因为ZARA将IT技术及数据分析引入门店的摆放及库存等流程中,店面的转换率明显提升,销售率也随之大增。这就是说明了数据分析对于零售企业的巨大作用。
总的来说,IBM所做的是通过大数据或者说数据分析为手段,帮助客户进行营销改进或优化,从订单管理、生产及销售各个环节,提升效率和转化率,改进企业内部的运作机制,以做到开源节流。
AsiaAnalytics首席执行官莫利伟先生对于IBM的杨旭青的观点非常赞同。他表示,数据分析对于公司来说,从财务以及业务的状况方面都可以带来很多的好处。根据麦肯锡的一份报告指出,能够善于运用这些数据分析的公司,平均的生产率和利润额都会比不采用这一方面的技术公司都要高5到6个百分点。以市场部作为一个例子来讲,同一份报告指出,如果能够以数据为中心来进行市场营销规划和决策,它的投入产出比会比其他不采用这一类方式的公司能够高15-20%。
通过分析我们可以为客户提供一对一定制化消费的体验,因为客户希望被理解、被尊重,能够享受特别感受的购物行为。除了这种定制化一对一的消费体验,对于数据有效的分析可以很好的去理解某一些或者特定细分客户群体对他有更深的理解,反过来通过对客户的了解,可以有助于产品的研发,针对特定群体产品开发以及营销手段。
数据分析应从数据积累做起
关于数据分析对于企业最大的优势这个问题,莫利伟先生进一步说明自己的观点。首先,数据分析不一定非要和“大数据”联系在一起。目前在中国真正意义上能够使用实时、产生大量数据进行分析与业务决策的公司并不多。目前的数据分析对于企业来说,能够提升明显的效率及降低成本。例如,有个公司希望推出一种最新的饮料,希望知道到底是男性还是女性对这个饮料会更喜欢。如果做市场调研、问卷调查,找300个人,其中150个男人和150个女的,肯定会得出一定的数据量,但这一数据量只在几个KB而已,而真正需要数据量则应该达到几个MB或者到一个GB。在中国一些大型的公司,包括运营商、银行及淘宝平台,确实已经开始用到数据挖掘的方式来做一些预测性分析,帮助业务的决策。这些都是利用大量数据进行分析的案例。
其次,单纯从数据量上面来讲,不仅是大企业,在一些中小型企业中,如有若干年的积累,也可以去做数据挖掘跟预测性分析。基本来说,1万条消费者的记录,10个或者20个左右的变量,这个数据量可能在20个DB。拥有的数据量越大,数据分析的成功率也就越大。所以无论是大型企业,还是中小型企业都应该从数据积累做起,并通过有效的算法,进行深度分析,才能得出结论。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27