京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析应从数据积累做起
“不会酿酒,也能成为好的品酒师。”在IBM数据分析沙龙中,AsiaAnalytics首席执行官莫利伟通过品酒师的事例,说明企业应该如何正确进行数据分析,为大数据的应用作准备。作为一个企业的管理者,并不需要成为数据分析的天才或科学家,但需要将自己站在一个消费者的立场,体验、并理解数据分析带来的作用,从而更好地利用数据分析,实现最佳的收益。
以上来自于8月23日的IBM数据分析沙龙中。IBM软件部智慧商务技术总监杨旭青先生和AsiaAnalytics首席执行官莫利伟Olivier Maugain先生从IBM智慧商务、数据分析及大数据等方面,与记者一起分享目前企业数据分析的策略及重点方向。
对于大数据,IBM软件部智慧商务技术总监杨旭青先生首先从IBM软件部门中智慧商务的业务,带来IBM的观点。在IBM的智慧商务就是利用“大数据”进行分析、处理数据,形成一个完整的价值链,包括企业采购、营销、服务及销售多个方面。
一般我们理解的“大数据”,往往存在于电子商务方面,最典型的代表就是电子商务网站。消费者在购买相关商品后,系统会自动推送相关产品,也就是所谓的“猜你喜欢”。但有时会常常出现一大堆已经购买过的类似商品,并不会促进二次消费,有时候可能会出现更为便宜,更好的商品,给购买者带来负面感受,影响购物体验。所以IBM认为,企业不应该将数据分析局限于营销方面,首先要捕获客户行为,然后把客户分群。然后是长期的客户行为分析,而且是大量的客户行为分析,从而推测客人在购买过一件商品后,之后可能购买动向。所以不能单单从营销的角度考虑,只一味推荐雷同的商品。
除了针对营销部门的数据分析外,IBM对于企业内部的管理也有相应的解决办法,也是非常重要的部分。首先就是一些零售客户最为关心的订单管理,目的就在于与生产和库存紧密结合,可以提前预知客户群的数量、类型,需要生产多少的量,以及库存量等,以避免风险及浪费。正如一些电商企业,肯定有线上的交易平台和线下的仓储,经过数据分析,就能预测订单,以缩短整个周期,从管理、运营商获得较大的收益。对于订单管理,杨旭青先生又以全球服饰品牌ZARA的案例,进一步阐述。正因为ZARA将IT技术及数据分析引入门店的摆放及库存等流程中,店面的转换率明显提升,销售率也随之大增。这就是说明了数据分析对于零售企业的巨大作用。
总的来说,IBM所做的是通过大数据或者说数据分析为手段,帮助客户进行营销改进或优化,从订单管理、生产及销售各个环节,提升效率和转化率,改进企业内部的运作机制,以做到开源节流。
AsiaAnalytics首席执行官莫利伟先生对于IBM的杨旭青的观点非常赞同。他表示,数据分析对于公司来说,从财务以及业务的状况方面都可以带来很多的好处。根据麦肯锡的一份报告指出,能够善于运用这些数据分析的公司,平均的生产率和利润额都会比不采用这一方面的技术公司都要高5到6个百分点。以市场部作为一个例子来讲,同一份报告指出,如果能够以数据为中心来进行市场营销规划和决策,它的投入产出比会比其他不采用这一类方式的公司能够高15-20%。
通过分析我们可以为客户提供一对一定制化消费的体验,因为客户希望被理解、被尊重,能够享受特别感受的购物行为。除了这种定制化一对一的消费体验,对于数据有效的分析可以很好的去理解某一些或者特定细分客户群体对他有更深的理解,反过来通过对客户的了解,可以有助于产品的研发,针对特定群体产品开发以及营销手段。
数据分析应从数据积累做起
关于数据分析对于企业最大的优势这个问题,莫利伟先生进一步说明自己的观点。首先,数据分析不一定非要和“大数据”联系在一起。目前在中国真正意义上能够使用实时、产生大量数据进行分析与业务决策的公司并不多。目前的数据分析对于企业来说,能够提升明显的效率及降低成本。例如,有个公司希望推出一种最新的饮料,希望知道到底是男性还是女性对这个饮料会更喜欢。如果做市场调研、问卷调查,找300个人,其中150个男人和150个女的,肯定会得出一定的数据量,但这一数据量只在几个KB而已,而真正需要数据量则应该达到几个MB或者到一个GB。在中国一些大型的公司,包括运营商、银行及淘宝平台,确实已经开始用到数据挖掘的方式来做一些预测性分析,帮助业务的决策。这些都是利用大量数据进行分析的案例。
其次,单纯从数据量上面来讲,不仅是大企业,在一些中小型企业中,如有若干年的积累,也可以去做数据挖掘跟预测性分析。基本来说,1万条消费者的记录,10个或者20个左右的变量,这个数据量可能在20个DB。拥有的数据量越大,数据分析的成功率也就越大。所以无论是大型企业,还是中小型企业都应该从数据积累做起,并通过有效的算法,进行深度分析,才能得出结论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09