京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		
	各种排序算法总结
排序算法是最基本最常用的算法,不同的排序算法在不同的场景或应用中会有不同的表现,我们需要对各种排序算法熟练才能将它们应用到实际当中,才能更好地发挥它们的优势。今天,来总结下各种排序算法。
下面这个表格总结了各种排序算法的复杂度与稳定性:
	
	
各种排序算法复杂度比较.png
冒泡排序
冒泡排序可谓是最经典的排序算法了,它是基于比较的排序算法,时间复杂度为O(n^2),其优点是实现简单,n较小时性能较好。
算法原理
相邻的数据进行两两比较,小数放在前面,大数放在后面,这样一趟下来,最小的数就被排在了第一位,第二趟也是如此,如此类推,直到所有的数据排序完成
c++代码实现
void bubble_sort(int arr[], int len)
{
for (int i = 0; i < len - 1; i++)
{
for (int j = len - 1; j >= i; j--)
{
if (arr[j] < arr[j - 1])
{
int temp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = temp;
}
}
}
}
选择排序
算法原理
先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
c++代码实现
void select_sort(int arr[], int len)
{
for (int i = 0; i < len; i++)
{
int index = i;
for (int j = i + 1; j < len; j++)
{
if (arr[j] < arr[index])
index = j;
}
if (index != i)
{
int temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
}
}
}
	
	
插入排序
算法原理
将数据分为两部分,有序部分与无序部分,一开始有序部分包含第1个元素,依次将无序的元素插入到有序部分,直到所有元素有序。插入排序又分为直接插入排序、二分插入排序、链表插入等,这里只讨论直接插入排序。它是稳定的排序算法,时间复杂度为O(n^2)
c++代码实现
void insert_sort(int arr[], int len)
{
for (int i = 1; i < len; i ++)
{
int j = i - 1;
int k = arr[i];
while (j > -1 && k < arr[j] )
{
arr[j + 1] = arr[j];
j --;
}
arr[j + 1] = k;
}
}
快速排序
算法原理
快速排序是目前在实践中非常高效的一种排序算法,它不是稳定的排序算法,平均时间复杂度为O(nlogn),最差情况下复杂度为O(n^2)。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
c++代码实现
void quick_sort(int arr[], int left, int right)
{
if (left < right)
{
int i = left, j = right, target = arr[left];
while (i < j)
{
while (i < j && arr[j] > target)
j--;
if (i < j)
arr[i++] = arr[j];
while (i < j && arr[i] < target)
i++;
if (i < j)
arr[j] = arr[i];
}
arr[i] = target;
quick_sort(arr, left, i - 1);
quick_sort(arr, i + 1, right);
}
}
归并排序
算法原理
归并排序具体工作原理如下(假设序列共有n个元素):
将序列每相邻两个数字进行归并操作(merge),形成floor(n/2)个序列,排序后每个序列包含两个元素
将上述序列再次归并,形成floor(n/4)个序列,每个序列包含四个元素
重复步骤2,直到所有元素排序完毕
归并排序是稳定的排序算法,其时间复杂度为O(nlogn),如果是使用链表的实现的话,空间复杂度可以达到O(1),但如果是使用数组来存储数据的话,在归并的过程中,需要临时空间来存储归并好的数据,所以空间复杂度为O(n)
c++代码实现
void merge(int arr[], int temp_arr[], int start_index, int mid_index, int end_index)
{
int i = start_index, j = mid_index + 1;
int k = 0;
while (i < mid_index + 1 && j < end_index + 1)
{
if (arr[i] > arr[j])
temp_arr[k++] = arr[j++];
else
temp_arr[k++] = arr[i++];
}
while (i < mid_index + 1)
{
temp_arr[k++] = arr[i++];
}
while (j < end_index + 1)
temp_arr[k++] = arr[j++];
for (i = 0, j = start_index; j < end_index + 1; i ++, j ++)
arr[j] = temp_arr[i];
}
void merge_sort(int arr[], int temp_arr[], int start_index, int end_index)
{
if (start_index < end_index)
{
int mid_index = (start_index + end_index) / 2;
merge_sort(arr, temp_arr, start_index, mid_index);
merge_sort(arr, temp_arr, mid_index + 1, end_index);
merge(arr, temp_arr, start_index, mid_index, end_index);
}
}
堆排序
二叉堆是完全二叉树或者近似完全二叉树,满足两个特性
父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值
每个结点的左子树和右子树都是一个二叉堆
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。一般二叉树简称为堆。
堆的存储
	一般都是数组来存储堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。存储结构如图所示:
	
	
堆结构.png
	
堆排序原理
堆排序的时间复杂度为O(nlogn)
算法原理(以最大堆为例)
先将初始数据R[1..n]建成一个最大堆,此堆为初始的无序区
再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
重复2、3步骤,直到无序区只有一个元素为止。
c++代码实现
/**
* 将数组arr构建大根堆
* @param arr 待调整的数组
* @param i 待调整的数组元素的下标
* @param len 数组的长度
*/
void heap_adjust(int arr[], int i, int len)
{
int child;
int temp;
for (; 2 * i + 1 < len; i = child)
{
child = 2 * i + 1; // 子结点的位置 = 2 * 父结点的位置 + 1
// 得到子结点中键值较大的结点
if (child < len - 1 && arr[child + 1] > arr[child])
child ++;
// 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
if (arr[i] < arr[child])
{
temp = arr[i];
arr[i] = arr[child];
arr[child] = temp;
}
else
break;
}
}
/**
* 堆排序算法
*/
void heap_sort(int arr[], int len)
{
int i;
// 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
for (int i = len / 2 - 1; i >= 0; i--)
{
heap_adjust(arr, i, len);
}
for (i = len - 1; i > 0; i--)
{
// 将第1个元素与当前最后一个元素交换,保证当前的最后一个位置的元素都是现在的这个序列中最大的
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
// 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
heap_adjust(arr, 0, i);
}
}
其它排序代码,待补充。。。
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27