
各种排序算法总结
排序算法是最基本最常用的算法,不同的排序算法在不同的场景或应用中会有不同的表现,我们需要对各种排序算法熟练才能将它们应用到实际当中,才能更好地发挥它们的优势。今天,来总结下各种排序算法。
下面这个表格总结了各种排序算法的复杂度与稳定性:
各种排序算法复杂度比较.png
冒泡排序
冒泡排序可谓是最经典的排序算法了,它是基于比较的排序算法,时间复杂度为O(n^2),其优点是实现简单,n较小时性能较好。
算法原理
相邻的数据进行两两比较,小数放在前面,大数放在后面,这样一趟下来,最小的数就被排在了第一位,第二趟也是如此,如此类推,直到所有的数据排序完成
c++代码实现
void bubble_sort(int arr[], int len)
{
for (int i = 0; i < len - 1; i++)
{
for (int j = len - 1; j >= i; j--)
{
if (arr[j] < arr[j - 1])
{
int temp = arr[j];
arr[j] = arr[j - 1];
arr[j - 1] = temp;
}
}
}
}
选择排序
算法原理
先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
c++代码实现
void select_sort(int arr[], int len)
{
for (int i = 0; i < len; i++)
{
int index = i;
for (int j = i + 1; j < len; j++)
{
if (arr[j] < arr[index])
index = j;
}
if (index != i)
{
int temp = arr[i];
arr[i] = arr[index];
arr[index] = temp;
}
}
}
插入排序
算法原理
将数据分为两部分,有序部分与无序部分,一开始有序部分包含第1个元素,依次将无序的元素插入到有序部分,直到所有元素有序。插入排序又分为直接插入排序、二分插入排序、链表插入等,这里只讨论直接插入排序。它是稳定的排序算法,时间复杂度为O(n^2)
c++代码实现
void insert_sort(int arr[], int len)
{
for (int i = 1; i < len; i ++)
{
int j = i - 1;
int k = arr[i];
while (j > -1 && k < arr[j] )
{
arr[j + 1] = arr[j];
j --;
}
arr[j + 1] = k;
}
}
快速排序
算法原理
快速排序是目前在实践中非常高效的一种排序算法,它不是稳定的排序算法,平均时间复杂度为O(nlogn),最差情况下复杂度为O(n^2)。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
c++代码实现
void quick_sort(int arr[], int left, int right)
{
if (left < right)
{
int i = left, j = right, target = arr[left];
while (i < j)
{
while (i < j && arr[j] > target)
j--;
if (i < j)
arr[i++] = arr[j];
while (i < j && arr[i] < target)
i++;
if (i < j)
arr[j] = arr[i];
}
arr[i] = target;
quick_sort(arr, left, i - 1);
quick_sort(arr, i + 1, right);
}
}
归并排序
算法原理
归并排序具体工作原理如下(假设序列共有n个元素):
将序列每相邻两个数字进行归并操作(merge),形成floor(n/2)个序列,排序后每个序列包含两个元素
将上述序列再次归并,形成floor(n/4)个序列,每个序列包含四个元素
重复步骤2,直到所有元素排序完毕
归并排序是稳定的排序算法,其时间复杂度为O(nlogn),如果是使用链表的实现的话,空间复杂度可以达到O(1),但如果是使用数组来存储数据的话,在归并的过程中,需要临时空间来存储归并好的数据,所以空间复杂度为O(n)
c++代码实现
void merge(int arr[], int temp_arr[], int start_index, int mid_index, int end_index)
{
int i = start_index, j = mid_index + 1;
int k = 0;
while (i < mid_index + 1 && j < end_index + 1)
{
if (arr[i] > arr[j])
temp_arr[k++] = arr[j++];
else
temp_arr[k++] = arr[i++];
}
while (i < mid_index + 1)
{
temp_arr[k++] = arr[i++];
}
while (j < end_index + 1)
temp_arr[k++] = arr[j++];
for (i = 0, j = start_index; j < end_index + 1; i ++, j ++)
arr[j] = temp_arr[i];
}
void merge_sort(int arr[], int temp_arr[], int start_index, int end_index)
{
if (start_index < end_index)
{
int mid_index = (start_index + end_index) / 2;
merge_sort(arr, temp_arr, start_index, mid_index);
merge_sort(arr, temp_arr, mid_index + 1, end_index);
merge(arr, temp_arr, start_index, mid_index, end_index);
}
}
堆排序
二叉堆是完全二叉树或者近似完全二叉树,满足两个特性
父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值
每个结点的左子树和右子树都是一个二叉堆
当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。一般二叉树简称为堆。
堆的存储
一般都是数组来存储堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。存储结构如图所示:
堆结构.png
堆排序原理
堆排序的时间复杂度为O(nlogn)
算法原理(以最大堆为例)
先将初始数据R[1..n]建成一个最大堆,此堆为初始的无序区
再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
重复2、3步骤,直到无序区只有一个元素为止。
c++代码实现
/**
* 将数组arr构建大根堆
* @param arr 待调整的数组
* @param i 待调整的数组元素的下标
* @param len 数组的长度
*/
void heap_adjust(int arr[], int i, int len)
{
int child;
int temp;
for (; 2 * i + 1 < len; i = child)
{
child = 2 * i + 1; // 子结点的位置 = 2 * 父结点的位置 + 1
// 得到子结点中键值较大的结点
if (child < len - 1 && arr[child + 1] > arr[child])
child ++;
// 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点
if (arr[i] < arr[child])
{
temp = arr[i];
arr[i] = arr[child];
arr[child] = temp;
}
else
break;
}
}
/**
* 堆排序算法
*/
void heap_sort(int arr[], int len)
{
int i;
// 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
for (int i = len / 2 - 1; i >= 0; i--)
{
heap_adjust(arr, i, len);
}
for (i = len - 1; i > 0; i--)
{
// 将第1个元素与当前最后一个元素交换,保证当前的最后一个位置的元素都是现在的这个序列中最大的
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
// 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
heap_adjust(arr, 0, i);
}
}
其它排序代码,待补充。。。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07