
大数据职位所需的数据场技能
除了报表统计外,还需要对数据的有很强的解读能力。电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别等等技术,让我们浑身便散发出大数据与机器学习的各种场信息,给人以满满的正能量。
01 数据场
学过物理的小伙伴,都知道世界充满了电场和磁场。了解过佛学的人,都知道世界充满了念力场与信息场,通过信息场,可以与更高一级的文明进行沟通。
有的人一出现,浑身便会散发出强大的气场。现在是数据时代,整天和数据打交道,要培养自己的数据场。开句玩笑的话,以后往人群中一站,还未开口,浑身便散发出大数据与机器学习的各种场信息,给人以满满的正能量。
说起“大数据”一词,也是真正被吵够了。连做个简单的统计也叫大数据,做个表格、画个图形出来,就叫大数据了。凡是不和“大数据”沾边,就感觉已经落伍了。其实,很多人除了知道简单的统计外,根本不了解大数据是什么。甚至连Hadoop都不知为何物,更别谈机器学习了。
大数据是一个概念也是一门技术,是在以Hadoop为代表的大数据平台框架上进行的各种数据分析技术。包括了实时数据处理、离线数据处理;还包括了数据分析,数据挖掘,和用机器学习算法进行预测分析。
概念吵着吵着就变味了。用“大数据”来代表一切,有些不太合理。目前比较合适的一个词是数据科学(Data Science),做数据科学的可以叫数据科学家。当然真正到科学家这个级别,要求是非常高的,需要有完整的数据知识体系。
也许小时候的梦想就是当科学家,现在终于不用上博士就可以实现了。虽然很多都只是自己团队或者公司封的职位。接下来,可以看看,在数据方面上,大概有哪些职位。
02 数据职位
限于个人的阅历与认识,在此只是列举其中一部分出来。
2.1 开发相关
主要有数据抓取,也即通常说的网络爬虫。需要考虑数据抓取的实时性与完整性,还有数据及时更新,数据去重等等。严格来说,和通常意义上的大数据相关性不大,主要是后端开发的一系列技术,其中也会涉及分布式的一些技术。
ETL开发,ETL为Extract、Transform和Load的缩写,即数据抽取,转换与装载。将各种来源的数据进行收集、规范和存储起来。可以是离线的方式,存储在以Hadoop为代表的大数据集群中。也可以是实时的展现在报表系统中。如果是实时的,也叫实时数据流开发,通常和Storm框架或者Spark Streaming技术相关。
Hadoop平台开发,专指以大数据框架为基础,并在此基础上进行二次开发或者数据流开发。对数据平台做开发与改进,只能是程序员的工作了,根据业务需求,对现有的平台进行改进与优化。因为是平台相关的,通常需要Java与Scala的专业程序员,这块和数据分析基本没有太大关系。
另外还有纯前端的数据可视化技术开发,或者纯运维的大数据集群管理等等。
2.2 报表分析
商业智能分析,包括报表分析,运营或者销售分析,这一块以Excell、SPSS和R为代表。主要是指对针对具体业务,对现有的数据进行统计分析,期待从中发现一些规律与趋势。
数据分析报表,也是最常用的数据分析师职位的一些工作,通常产出以报表为主。这块很多时候会与运营部门的需求相关,技术上主要以成熟的工具为主。
当数据量一大,就会涉及在集群环境下的分析,分析师通常很熟悉SQL,这也是构建于Hadoop之上的Hive能被大众熟悉的原因。
除了报表统计外,还需要对数据的有很强的解读能力,能分析和解读出一些现象产生的原因,同时需要针对这些问题,提出一些可能的应对方案,以便对业务策略或者商业方向上有更多的指导。
一些专业领域分析,如网络安全分析,金融领域分析。这些领域的分析,通常需要用领域知识,深入现象背后去挖掘出产生的原因,不仅要具有很强的分析能力,也需要很强的领域知识。
2.3 算法挖掘
做为数据科学中的重头戏,便是数据挖掘和机器学习了。在线电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别(Siri),机器翻译,图像识别等等。
涉及大量机器学习算法,包括分类、聚类和个性推荐等常用数据挖掘技术。也包括数据分析的很多基础,和数据分析偏重的报表产出并不同,并不强调产出大量的报表,通常是在现有数据基础上的产出新数据,用于服务业务系统。
还可以推广到人工智能,其中涉及大量的数据处理与挖掘技术。比如机器人,无人驾驶,总之是尽量的在某些领域达到或者超过人类。人类能处理如下内容:
Number: 数据(数)
NLP: 自然语言处理(文字)
Pic: 图像处理(图片)
Voice: 语音识别(语音)
Video: 视频处理(视频)
个性推荐: (集体智慧与社交化)
其中会用到大量的机器学习算法,包括深度学习,从而达到服务人类的目的。
03 生态与周边
关于数据的统计、分析与挖掘,这些概念的侧重点不一样。数据统计,利用统计学的知识,产出数据和报表;数据分析,除了产出数据和报表外,还需要分析其中原因,最好能找出对应的策略;数据挖掘,需要在数据分析的基础上,发现新的,有价值的知识及潜在的规律。如果只是对原有的数据进行统计分析,而没有对未知的事物进行预测,是不算数据挖掘。
数据相关的职位各种各样,我们要构建数据场时,抽取其中的各种技能出来,组成自己的技能表。最近读到一篇文章:《机器学习职位需要的七个关键技能》
文章描述了机器学习需要的七个技能,以及需要这些技能的原因,主要技能如下:
编程语言(Python/C++/R/Java);
概率与统计;
应用数学与算法;
Unix/Linux工具集;
高级信号处理技术(特征提取);
大量阅读,适应快速变化,更新自己;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10