
大数据职位所需的数据场技能
除了报表统计外,还需要对数据的有很强的解读能力。电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别等等技术,让我们浑身便散发出大数据与机器学习的各种场信息,给人以满满的正能量。
01 数据场
学过物理的小伙伴,都知道世界充满了电场和磁场。了解过佛学的人,都知道世界充满了念力场与信息场,通过信息场,可以与更高一级的文明进行沟通。
有的人一出现,浑身便会散发出强大的气场。现在是数据时代,整天和数据打交道,要培养自己的数据场。开句玩笑的话,以后往人群中一站,还未开口,浑身便散发出大数据与机器学习的各种场信息,给人以满满的正能量。
说起“大数据”一词,也是真正被吵够了。连做个简单的统计也叫大数据,做个表格、画个图形出来,就叫大数据了。凡是不和“大数据”沾边,就感觉已经落伍了。其实,很多人除了知道简单的统计外,根本不了解大数据是什么。甚至连Hadoop都不知为何物,更别谈机器学习了。
大数据是一个概念也是一门技术,是在以Hadoop为代表的大数据平台框架上进行的各种数据分析技术。包括了实时数据处理、离线数据处理;还包括了数据分析,数据挖掘,和用机器学习算法进行预测分析。
概念吵着吵着就变味了。用“大数据”来代表一切,有些不太合理。目前比较合适的一个词是数据科学(Data Science),做数据科学的可以叫数据科学家。当然真正到科学家这个级别,要求是非常高的,需要有完整的数据知识体系。
也许小时候的梦想就是当科学家,现在终于不用上博士就可以实现了。虽然很多都只是自己团队或者公司封的职位。接下来,可以看看,在数据方面上,大概有哪些职位。
02 数据职位
限于个人的阅历与认识,在此只是列举其中一部分出来。
2.1 开发相关
主要有数据抓取,也即通常说的网络爬虫。需要考虑数据抓取的实时性与完整性,还有数据及时更新,数据去重等等。严格来说,和通常意义上的大数据相关性不大,主要是后端开发的一系列技术,其中也会涉及分布式的一些技术。
ETL开发,ETL为Extract、Transform和Load的缩写,即数据抽取,转换与装载。将各种来源的数据进行收集、规范和存储起来。可以是离线的方式,存储在以Hadoop为代表的大数据集群中。也可以是实时的展现在报表系统中。如果是实时的,也叫实时数据流开发,通常和Storm框架或者Spark Streaming技术相关。
Hadoop平台开发,专指以大数据框架为基础,并在此基础上进行二次开发或者数据流开发。对数据平台做开发与改进,只能是程序员的工作了,根据业务需求,对现有的平台进行改进与优化。因为是平台相关的,通常需要Java与Scala的专业程序员,这块和数据分析基本没有太大关系。
另外还有纯前端的数据可视化技术开发,或者纯运维的大数据集群管理等等。
2.2 报表分析
商业智能分析,包括报表分析,运营或者销售分析,这一块以Excell、SPSS和R为代表。主要是指对针对具体业务,对现有的数据进行统计分析,期待从中发现一些规律与趋势。
数据分析报表,也是最常用的数据分析师职位的一些工作,通常产出以报表为主。这块很多时候会与运营部门的需求相关,技术上主要以成熟的工具为主。
当数据量一大,就会涉及在集群环境下的分析,分析师通常很熟悉SQL,这也是构建于Hadoop之上的Hive能被大众熟悉的原因。
除了报表统计外,还需要对数据的有很强的解读能力,能分析和解读出一些现象产生的原因,同时需要针对这些问题,提出一些可能的应对方案,以便对业务策略或者商业方向上有更多的指导。
一些专业领域分析,如网络安全分析,金融领域分析。这些领域的分析,通常需要用领域知识,深入现象背后去挖掘出产生的原因,不仅要具有很强的分析能力,也需要很强的领域知识。
2.3 算法挖掘
做为数据科学中的重头戏,便是数据挖掘和机器学习了。在线电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别(Siri),机器翻译,图像识别等等。
涉及大量机器学习算法,包括分类、聚类和个性推荐等常用数据挖掘技术。也包括数据分析的很多基础,和数据分析偏重的报表产出并不同,并不强调产出大量的报表,通常是在现有数据基础上的产出新数据,用于服务业务系统。
还可以推广到人工智能,其中涉及大量的数据处理与挖掘技术。比如机器人,无人驾驶,总之是尽量的在某些领域达到或者超过人类。人类能处理如下内容:
Number: 数据(数)
NLP: 自然语言处理(文字)
Pic: 图像处理(图片)
Voice: 语音识别(语音)
Video: 视频处理(视频)
个性推荐: (集体智慧与社交化)
其中会用到大量的机器学习算法,包括深度学习,从而达到服务人类的目的。
03 生态与周边
关于数据的统计、分析与挖掘,这些概念的侧重点不一样。数据统计,利用统计学的知识,产出数据和报表;数据分析,除了产出数据和报表外,还需要分析其中原因,最好能找出对应的策略;数据挖掘,需要在数据分析的基础上,发现新的,有价值的知识及潜在的规律。如果只是对原有的数据进行统计分析,而没有对未知的事物进行预测,是不算数据挖掘。
数据相关的职位各种各样,我们要构建数据场时,抽取其中的各种技能出来,组成自己的技能表。最近读到一篇文章:《机器学习职位需要的七个关键技能》
文章描述了机器学习需要的七个技能,以及需要这些技能的原因,主要技能如下:
编程语言(Python/C++/R/Java);
概率与统计;
应用数学与算法;
Unix/Linux工具集;
高级信号处理技术(特征提取);
大量阅读,适应快速变化,更新自己;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29