京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家做到这些,百万年薪不是梦
定义你自己
你是一个数据科学家?还是只是一个需要运用数据来做市场营销或者其他专业化工作的人?答案的不同决定了你在公司的自我定位和形象。如果你只是一个完全的数据科学家,那么你想进入市场岗位或是具体操作岗位几乎是不可能的。如果你是一个营销经理或业务主管,那么学习数据科学相关知识和语言可能能帮助你成为首席营销官或首席运营官。这也意味着你参与不同类型的问题,帮助企业解决复杂的问题,不仅仅是数据。你参与指导企业通过决策和投资。有机会的话去做更多的分析吧,它也会带来更多的就业机会。
重点放在价值上
数据科学对一个企业来说提供了许多有价值的建议,但当一天结束的时候,要看看这些有价值的建议是能增加收入还是能降低成本,或者是两者都有(增加利润)。原则上来说,省钱就意味着赚钱,然而在实践中,成本的降低和收入的增长不会一样。事实上降低成本可以用一些很简单粗暴的办法例如完全关闭企业。我的意思是,对于公司来说省钱是相对有限的,要提高效率才是重要的。重点是要为公司不断增长新的收入,去赚更多的钱。
去做一些比较轻松的问题
对一些高智商人群和技术人群来说很重要的个人特质就是会把解决“困难的问题”看成是有价值和令人钦佩的。事实上,科学家们常常陷入这个陷阱。是的,你解决了一个困难的问题,但是这对企业有帮助吗?什么是价值?应该花费时间在为企业创造价值的问题上,这些经常比解决一个高难度的问题要容易。当你解决一个问题时,你要问自己这对企业有什么帮助。
谈论数据科学
当你第一次得到一个数据科学家的工作的时候,你很可能会有几个有同样职位的同行。希望你的领导能把你们的积极性调动的很好,但很多企业是没有的。组织午餐和学习”的会议,当你提出一个观点或者关于数据科学的重要部分时邀请你的同事参与讨论,向你的同事们介绍一个很酷的数据可视化,展示一个目前公司的数据分析项目,看看数据科学是如果给企业带来提升的。这将极大增加你的人际网络。最重要的是,显示数据科学对财务的影响。
远离屏幕
如果你的目标是参与领导和改造一个组织,它将需要比写代码和做分析做的更多。在你的职业生涯的发展中,你将有机会不仅仅进行分析也学会在公司的业务操作模式。如果你在一家生产商品的公司工作,去工厂参观学习,学习你建模的过程。如果你的公司是针对人的服务,那么学会向客户服务。总之,真正学习业务!它会让你的数据更科学,使你成为一个更好的执行者!
目前几乎每一个行业都在投资数据采集和数据科学家,来发现数据的价值,然而所有的企业也都非常关注成本,尤其是人力成本。数据科学家在相当长时间内是许多企业的一个重点,那么对于数据科学家来说,明确自己的职业生涯非常重要。我们必须承认,很多数据科学家需要解决业务问题才对企业有价值。正如其他技术性很强的专业律师,医务人员、摄影师等等。一些专业真正被数字模型和自动化所威胁,我们应该期待新的商业模式出现,让那些获取数据科学好处的企业降低成本,当然也包括外包。
现在大量数据科学的消耗在一些对企业数据的整理和准备上,但随着软件工具和算法变得更加先进,更多的数据准备工作可以成本更低。这些对企业来说是好消息,因为他们可以降低做数据的成本,数据科学家也可以在单调乏味的工作上花更少的时间。
在我的职业早期的时候,我还需要花大量时间在建立数据字段和矩阵来运行一个简单的回归工作。但现在已经有很多广泛使用(甚至是免费)的工具,同样的任务可以在更短的时间内运行。目前数据科学家也越来越多,对我来说,这意味着数据科学家不能停滞在自己的角色,而要建立在对企业的了解上,贴近任务并了解它是如何运作的!
我的建议是你应该比分析做的更多,将自己定位为在分析方面有专业知识的领导人员,来参与企业的决策、投资和运营。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10