
专家总结:有效管理大数据的7个诀窍
大学教授和统计学家们对数据大张旗鼓的推崇与使用,引导了一个新的行业诞生,那就是大数据的收集与管理。专家们认为,几乎所有的行业都会对大数据有所贡献。但因为大数据行业较新,所以管理大数据的方法并没有明确的阐释。
如果你正在寻求管理自身数据的方法,那么这篇文章会对你有很大帮助,首先,让我们纠正一下基本概念。
什么是“大数据”?
Greg Satell在福布斯杂志中曾说过:“在尝试管理大数据之前,首先要明白这个词的意思是什么。虽然“大数据”这个名词现已十分流行,很多人在谈论它,还有更多关键领域的投资者也对它报以极大热情。但是,这种过分炒作导致了所有数据都被称作大数据,人们对大数据的含义却越来越困惑。”
正如作者在一篇博客中提到过的:
…大数据是任何无法用传统手段完成处理的数据,例如Excel电子表格、PowerPoint或文本编辑器。有时,同一时间在成千上万台服务器上运行的并行软件只为处理大数据。像关键词搜索、社交媒体营销和趋势探析都需要动用大数据。当然,你肯定会有使用互联网的需要,当连入互联网时,你就已经用到了大数据。
Satell引用了一本书,其中认为大数据是那些需要大动干戈才能被处理完成的事,而不是能够小范围内能处理的事情,因为这些研究的样本太少,结论会不准确。
除非是在无数次尝试的基础上,否则你不能准确的预测一个球员的罚球命中率。随着增加数据的使用量,我们可能会吸收到低质量的数据来源,但通过筛选,计算出来的数据仍会是准确的。这便是使用数十亿散点数据来分析一些重要事情的思路。
以下是管理大数据的7个小诀窍:
1、明确你的目标
对于每一个研究或项目,你必须对自己提问,明确想要达到什么样的目标。同样也应该与团队探讨,了解他们所认为的最重要的事。目标决定了你应该收集什么数据,以及如何推动项目。
没有明确的目标和为实现目标所制定的策略,你要么会失去方向,去收集错误的数据,要么只能收集到很少的正确数据。但即使你收集到了正确的数据,也不知该如何应用,它对于你虚无的目标并没有任何意义。
2、确保数据安全
确保所有存储数据的容器都是可访问且安全的,因为你一定不希望数据被窃或丢失,没有数据做不了任何分析。确保你已经落实了严密的防火墙安全措施、垃圾邮件过滤、恶意软件扫描以及对团队成员的权限控制。
最近,我参加了一个由Your公司CEO Robert Carter举办的研讨会,他分享了自身以及与合作企业共同的经验。他说,许多企业主通过网站和产品与用户互动从而收集数据,但却不采取足够的预防和保护数据的措施。这已经使一些客户对企业失去信任,且摧毁了一些交易,客户甚至会状告索求损害赔偿。
“确保数据安全看起来似乎是很平常的一件事,但太多的企业和组织没有遵守这一忠告,尝到了违背后的苦果,”Carter总结道。所以,不要成为他们之中的一个。
3、保护数据基础设施
除了入侵数据库和人为因素会威胁你的数据,一些自然因素同样能够破坏你的数据,让你完全失去它们。
人们往往会忽视一件事,那就是高温、潮湿和极端寒冷都能够损害数据。这些因素可能引起系统故障,以致长时间宕机和重启失败。你应该找到此类环境因素,并且在这些情况发生之前采取措施,以防数据丢失,不要等数据丢失了再来难过。
4、遵循审计规则
即使很多数据管理者都十分繁忙,但他们也必须维持对所有数据的良好管理,以备审查。无论你是管理客户的支付数据、信用评分的数据,甚至是看似平凡的数据(如网站匿名用户的数据),你都需要正确的处理它们。
这将确保你有足够的责任心和能力,能够继续赢得客户和用户的信任。
5、数据需要相互连接
确保你所使用的软件集成了多个解决方案后,还有一个会导致问题的因素,那就是应用程序无法与你的数据连接,反之亦然。
你应该充分利用云存储、远程数据库管理员支持和其他数据管理工具,以确保各数据集的无缝同步,特别是在多个团队成员同时访问或编辑数据的情况下。
6、了解需要捕捉什么样的数据
当你是大数据的管理者,你必须知道在特殊场景下使用哪种数据最好。因此,你必须了解要收集哪些数据以及如何使用它们。
而这又引回了我们上面说的最基础的一点:明确你的目标,以及如何用恰当的数据来实现它。
7、适应变化
软件和数据是每天都在不断变化的,新的工具和产品每天都在冲击着市场,改变已经过时的游戏规则。例如,如果你在卖牙刷,并且通过六个月的时间收集了你需的大量客户数据,比如他们对牙膏口味的偏好和其他习惯,如果他们表现出对某一口味或电动牙刷的偏好,那么你就要改变你的销售策略了。你还需要改变收集与利益相关的数据的方式,当你遭到拒绝时,不懂变通会导致数据收集失败。
你必须学会灵活调整,适应新的管理和交换数据的方式。这就是与你所在行业保持紧密连接,真正收获大数据带来的益处的方法。记住这些技巧可以帮助你以一种简单的方式处理大数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07