
“大数据”时代浓浓的统计学气息
统计学在近几年的变化,可以说受计算机的影响最为强烈。
计算机使商业模式发生了翻天覆地的变化。商品的采购、库存、销售等记录基本上全都已经数据化,成本和销量的把控与用纸笔进行管理的时代相比也变 得更加简单。顾客资料与消费记录、工作人员的工作时间与评定、健康状态、支付的报酬与成本核算等信息,都可以存储在公司内部系统和Excel电子表格中。 为了生产而进行的机械操作、到自己公司网站的链接,基本上所有的登录情况都会被记录下来,必要时可以综合统计作为经营的参考。就算说那些大型公司几乎所有 的业务流程已经全部实现电子化,也不为过。
但是,当一系列的业务都实现计算机化之后,那些从事计算机业务的企业却遭遇了瓶颈。不管他们如何提高硬件和软件的处理性能,如果需要计算机化的 业务流程没有增加,顾客对性能没有特别需求,那么他们就无法继续销售自己的商品。所以,不管是硬件厂商还是软件厂商,还是使用这些提供计算机服务的厂商, 所有与计算机相关的企业,都必须对已经得到满足的顾客们,提供一个购买他们更新技术的“理由”。
从好的方面来看,要想将已经足以满足顾客需要的性能更好地加以利用,就要考虑“如何创造更多的价值”。而实际上,计算机企业所考虑的是向顾客传 达“为了找出创造更多价值的方法,必须进行大量的数据处理”,为了让顾客接受这一提议,必须有一个“明显对商业有价值的理由”。
以现在的计算机技术来看,不管是多么庞大的数据量或者多么繁杂的计算都能够胜任,因此需要考虑的问题就变成了应该针对什么进行计算,而答案除了 统计分析之外再无其他。当然,如果只是将“统计分析”这个简单的词语作为题目,会让人感觉缺乏吸引力,于是就诞生出“大数据”和“商务智能”的概念。现在 大家之所以都对这两个题目和统计学如此关注,恐怕就是出于上述原因。
计算机行业的业界巨人,在弗明汉研究使用穿孔卡片和大型计算机时代就为其提供技术支持的IBM公司在这一点上表现得最为突出。IBM斥资数十亿 美元收购了在商务智能方面非常有名的Cognos公司,以及开发统计分析软件的SPSS公司,这两家公司都是在这一领域拥有丰富经验和影响力的公司。据说 2005~2011年之间,IBM公司对统计学和商务智能相关企业的投资金额已经超过140亿美元。
除了IBM之外,微软公司以及在数据库领域非常有名的甲骨文公司,还有NTT数据公司,都开始积极地收购与统计学和商务智能相关的企业。
或许这几家公司都已经发现,在接下来的时间里从自己的商业领域产生价值的主营产业,都在其中。
最能够证明这一推测的根据,来自于微软在专门用于招聘的网页上于2010年8月23日发表的一篇文章,其中提到技术领域今后最热门的3个专业,如下所示。
数据分析、机械学习、人工智能、自然语言处理。
商务智能、竞争分析。
分析、统计——特别是网页分析、分离测试(A/B测试)、统计分析。
只要是学过“计算机统计学”知识的人,都能够从上述内容里感觉到浓浓的统计学气息吧。
为了再现人类的认知机能,而从计算程序算法研究发展而来的机械学习与人工智能领域,如今若是没有统计学的理论基础就很难深入学习,至于商务智能 则完全可以说是统计学在商业领域的应用。要想完成A/B测试的计划,20世纪中叶现代统计学之父罗纳德·艾尔默·费希尔所完成的被称为“试验设计”的统计 学相关知识,则是最为重要的基础。
未来10年最受欢迎的职业是统计
另外,谷歌(Google)则比微软更加明确地表达了对统计学家的赞誉。谷歌的首席经济学家哈尔·范里安博士曾经在2009年1月麦肯锡公司发行的杂志上这样说道:
我一直坚信,未来10年最受欢迎的职业是统计。
最近,美国人经常使用“sexy”这个词来表达“受欢迎的”或者“有魅力的”,比如,“新款苹果手机的设计非常sexy”。哈尔认为统计学家也是“sexy”的。
作为一名统计学家,我对于哈尔的发言感到非常光荣,而且这绝对不是什么只停留在口头上的赞誉。统计学如今已经得到了计算机这个强有力的伙伴,可以被应用在所有领域,可以出现在世界上的每一个角落,以及人生中的每一个瞬间,能够对所有渴望得到回答的问题给出最佳答案。
曾经人类为了得到(自认为)正确的答案而只能寻求神的启示,后来在漫长时间中只能服从权威人士的意见。
但是,现在的情况不一样了。最佳答案就存在于每个人周围的数据之中。只要掌握统计学这个最强的学问,不管是想要健康、聪明,还是富裕,都变得非常简单。正如之前所说过的那样,这是世界上的学者们通过统计学证明的事实。
而想掌握这个最强、最受欢迎的学问,不必像IBM那样支付数额庞大的资金,只要在你的人生中投入一些学习时间就足够了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07