
18大经典数据挖掘算法小结
大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。
1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/42395865
2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法,
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/42558235
3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/42613011
4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/42680161
5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/42780439
6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/42921789
7.Apriori算法。Apriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43059211
8.FP-Tree(频繁模式树)算法。这个算法也有被称为FP-growth算法,这个算法克服了Apriori算法的产生过多侯选集的缺点,通过递归的产生频度模式树,然后对树进行挖掘,后面的过程与Apriori算法一致。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43234309
9.PageRank(网页重要性/排名)算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到Link Span攻击。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43311943
10.HITS算法。HITS算法是另外一个链接算法,部分原理与PageRank算法是比较相似的,HITS算法引入了权威值和中心值的概念,HITS算法是受用户查询条件影响的,他一般用于小规模的数据链接分析,也更容易遭受到攻击。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43311943
11.K-Means(K均值)算法。K-Means算法是聚类算法,k在在这里指的是分类的类型数,所以在开始设定的时候非常关键,算法的原理是首先假定k个分类点,然后根据欧式距离计算分类,然后去同分类的均值作为新的聚簇中心,循环操作直到收敛。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43373159
12.BIRCH算法。BIRCH算法利用构建CF聚类特征树作为算法的核心,通过树的形式,BIRCH算法扫描数据库,在内存中建立一棵初始的CF-树,可以看做数据的多层压缩。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43532111
13.AdaBoost算法。AdaBoost算法是一种提升算法,通过对数据的多次训练得到多个互补的分类器,然后组合多个分类器,构成一个更加准确的分类器。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43635115
14.GSP算法。GSP算法是序列模式挖掘算法。GSP算法也是Apriori类算法,在算法的过程中也会进行连接和剪枝操作,不过在剪枝判断的时候还加上了一些时间上的约束等条件。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43699083
15.PreFixSpan算法。PreFixSpan算法是另一个序列模式挖掘算法,在算法的过程中不会产生候选集,给定初始前缀模式,不断的通过后缀模式中的元素转到前缀模式中,而不断的递归挖掘下去。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43766253
16.CBA(基于关联规则分类)算法。CBA算法是一种集成挖掘算法,因为他是建立在关联规则挖掘算法之上的,在已有的关联规则理论前提下,做分类判断,只是在算法的开始时对数据做处理,变成类似于事务的形式。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43818787
17.RoughSets(粗糙集)算法。粗糙集理论是一个比较新颖的数据挖掘思想。这里使用的是用粗糙集进行属性约简的算法,通过上下近似集的判断删除无效的属性,进行规制的输出。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43876001
18.gSpan算法。gSpan算法属于图挖掘算法领域。,主要用于频繁子图的挖掘,相较于其他的图算法,子图挖掘算法是他们的一个前提或基础算法。gSpan算法用到了DFS编码,和Edge五元组,最右路径子图扩展等概念,算法比较的抽象和复杂。
详细介绍链接:http://blog.csdn.net/androidlushangderen/article/details/43924273
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07