
大数据VS心理学:大数据将革新心理学
什么是心理学?
依照百度百科的描述,心理学是一门研究人类的心理现象、精神功能和行为的科学。心理学研究涉及知觉、认知、情绪、人格、行为、人际关系、社会关系等许多领域,也与日常生活的许多领域——家庭、教育、健康、社会等发生关联。
心理学一方面尝试用大脑运作来解释个体基本的行为与心理机能;同时,心理学也尝试解释个体心理机能在社会行为与社会动力中的角色;而且,它也与神经科学、医学、生物学等科学有关,因为这些科学所探讨的生理作用会影响个体的心智。
心理学包括基础心理学与应用心理学两大领域。心理学家从事基础研究的目的是描述、解释、预测和影响行为。应用心理学家还有第五个目的——提高人类生活的质量。这些目标构成了心理学事业的基础。
依照传统的方法,心理学数据分析依靠的是样本,而心理学样本基本上是小样本,样本可以是几百人,或者多达5000人,但终究还是样本,这离理论上的样本数目还是相差甚远,其分析结果依然被认为不够准确,需要不断地对模型进行学习和训练来提高所谓的准确度。所以,可以这么说,心理学由于其的特点,限制了心理学科的发展。
大数据时代的来临
如今人工智能和计算机科学的大力发展让认知研究发生了革命性的变化。很多的数据已经不需要心理学家们去刻意采集,人们在互联网的世界里,自觉自愿或者无意识地提供一种真实、准确、及时的数据,这就是社会媒体的数据,这个数据就是大数据。
在一些大型的互联网公司手中,就有很多这种准确记录了用户行为的大数据资料。在大数据时代,有人可以做到比你自己更了解你自己。大数据已经对我们的社会科学、人文科学会产生很大的影响。
什么是大数据?
大数据是一个含义广泛的术语,是指面对的数据集是如此的庞大而复杂,需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿字节或EB字节的大小。这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章,可能是线性的,但更多的是非线性的。大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。大数据分析是在研究大量的数据的过程中寻找模式、相关性和其他有用的信息,它可以帮助公司政府等更好地适应变化,并做出更明智的决策。
这就是,人们通常用4个V(即Volume、Variety、Value、Velocity)来描述大数据的特征:数据体量巨大(Volume); 数据类型繁多(Variety,结构化数据和非结构化数据);价值密度低(Value) ;处理速度要求快(Velocity,在巨大的数据量面前,对处理速度的要求就显得“大”)。
什么是数据挖掘?
数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识,然后人们在数据挖掘的基础上再进行明确目标的数据分析。
数据挖掘中最经典算法就是PageRank。 PageRank是Google背后最重要的算法, 他是Google创始人之一拉里•佩奇(Larry Page)提出,并且在2001年9月被授予美国专利。PageRank里的page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是指佩奇(Larry Page),即这个等级方法是以佩奇来命名的。PageRank根据网站的外部链接和内部链接的数量和质量,衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多,也意味着PageRank越高。PageRank其级别从0到10级,10级为满分。一般PR值达到4,就算是一个不错的网站了。Google把自己的网站的PR值定到10。
大数据与心理学的结合
当然,任何手段都不是万能的。 “大数据”也有其不擅长的方面,
首先,数据不懂社交。大脑在计算方面很差劲(不信你可以心算一下678的平方是多少),但是大脑懂得社会认知。人们擅长反射彼此的情绪状态,擅长侦测出不合作的行为,擅长用情绪为事物赋予价值。
计算机擅长计算“量”而非“质”。计算机可以计算出你在83%的时间里与6名同事的社交互动情况,但是他们不可能捕捉到你心底对于那些多年未见的童年玩伴的感情,更不必说贾宝玉对于仅有三面之缘的史湘云的感情了。因此,在社交关系的决策中,不要愚蠢到放弃自己的感觉和思考,而去相信你桌子上的那台笔记本。
而且,数据偏爱潮流,忽视杰作。当大量个体对某种文化产品迅速产生兴趣时,数据分析可以敏锐地侦测到这种趋势。但是,一些重要的(也是有收益的)特性有可能在一开始就被数据摈弃了,仅仅因为它们的特异之处不为人所熟知。
大数据就像金庸笔下的侠客,武功高强,出神入化,万夫莫敌,但容易剑走偏锋,走火入魔。这是引入大数据推进心理学研究,一定要注意的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07