京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和人工智能为广告主带来的价值
1、所有这些不同时机加在一起,可以给广告主指出特定场合的最佳广告。这称为契机评分(moment scoring),由此产生的这种同步计算结果是人工智能(AI)与大数据结合的产物。
2、有了这么多的数据积累和这么快的决策速度,那全自动的广告投放就变得可行,不过这并不意味着不需要人的贡献。记住,人工智能的全部学习过程都需要人的理解力,去调整参数、广告传递的信息、广告创意,并且优化它们的结果。
3、能了解广告每一次被受众看到的实际价值将是一个重要的差异化优势。用户现在对你的广告作出反应的可能性有多大?这是主要问题。而最佳的做法是,如果你已经采用了人工智能和大数据来了解受众的反应,那么就不要再凭空去猜测。
近年来,人们使用媒体与社交网络的方式发生了巨大的变化。一个很好的例子就是移动媒体提供了难能可贵的便利性。移动媒体是21世纪的一个强烈特征,促使我们去提升管理大量信息的能力。这种环境下,广告主都想要找到优质的服务、技术、应用,来帮助自己组织和实施程序化的。
我们生活在数字时代中,消费者拥有充分的选择权,由此迫使广告主进行重大调整,提供独有的客户体验、个性化定制并且适应消费者的偏好与需求。每天,无论我们在做什么,我们都会收到激发“灵感与欲望”的信息。因而我们认为,对于广告主而言,只是靠个人资料信息来争取目标受众,这种旧的做法再也不顶事了。如今,关键在于能否找准契机!
在这个新世界里,广告主的成败将取决于能否理解最理想的时机在哪并据此果断采取行动,还取决于能否提高投资回报率。要做到这一点,就需要挖掘其他参数,比如了解你的客户是谁,知道他们在不同情况下会做出何种反应,快速决定如何及何时向用户提出建议。一个人每天的行为习惯很可能都会不一样。同样是每天下午两点前十四个小时的行为,周二与周六可能完全是两码事。我们周围的一切都会影响购买决定——一个人是不是买了张机票,外面是不是在下雨,或者最近看了一段有关如何开发一块新地的网络视频。
所有这些不同时机加在一起,可以给广告主指出特定场合的最佳广告。这称为契机评分(moment scoring),由此产生的这种同步计算结果是人工智能(AI)与大数据结合的产物。随着算法不断地产生即时计算结果,我们的AI也在不断迭代演进,在这个过程中信息得到添加,让市场营销对消费者下一次有机会观看广告的影响力得到提高与加强。数据在这种模式下源源不断地生产出来,让广告主能以理想的公众形象表达,完成更多成功的广告活动。
人工智能应用效果的另一个例子是“快速判断”。通过对网络足迹进行过滤,依据消费者上网期间的购买行为,就能够有针对性地向他们投放广告活动。比如有人逛体育类网站时买了东西,就会向他投放跟体育有关的广告。随着时间的推移,经过学习的AI就能识别这些用户当中谁是某类运动(比如足球)的爱好者。利用这个结果,消费者将获得一个新的评分,相比过去那种基于消费者泛泛兴趣的评分能更好地帮助广告主提高对目标受众的定位精度。
有了这么多的数据积累和这么快的决策速度,那全自动的广告投放就变得可行,不过这并不意味着不需要人的贡献。记住,人工智能的全部学习过程都需要人的理解力,去调整参数、广告传递的信息、广告创意,并且优化它们的结果。
在这个复杂的虚拟世界里,对于一个成功的广告活动而言,能了解广告每一次被受众看到的实际价值将是一个重要的差异化优势。用户现在对你的广告作出反应的可能性有多大?这是主要问题。而最佳的做法是,如果你已经采用了人工智能和大数据来了解受众的反应,那么就不要再凭空去猜测。换句话说,要让消费者对你的品牌产生好感,关键就在于找准契机,而且这也自然能让你的广告活动达到最佳效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06