京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解析:“大数据”有多大?
中国“十三五”规划建议中提出,拓展网络经济空间,推进数据资源开放共享,实施国家大数据战略,超前布局下一代互联网。这是我国首次提出推行国家大数据战略。
为何要把大数据放到“国家战略”的高度?这是因为,大数据开启了一次重大的时代转型,改变了我们的生活及理解世界的方式。
数据之大
大数据首先是“大”,是海量数据。国际数据公司估计,全球2012年产生数据总量约2.8泽字节。泽是10的21次方,也就是10万亿亿,2.8泽字节相当于3000多亿部时长两小时的高清电影,连着播放7000多万年也放不完。该公司还预测,全球数据量每隔两年翻一番,2020年达到40泽字节。
但“大”只是表象,大数据的本质是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此可以创新产品、服务和管理,也可以预测未来的趋势。因此,国家、企业甚至每个人,都能从大数据中受益。
“智慧城市”
“智慧城市”就是大数据服务于民的一个范例。在欧洲,西班牙古老的港口城市桑坦德被选为欧盟试点城市。在面积约为6平方公里的桑坦德市中心,近1万个传感器每隔几分钟把城市的交通、天气、行人动作等数据传到数据中心,公交车发送自己的位置、速度及周边环境,居民也可以成为“人体传感器”,通过智能手机应用程序上传实时数据。
现在,桑坦德市的数据中心能通知市政当局路灯的状况,并根据需要自动调节路灯的亮度。市民通过一个名为“城市脉搏”的手机应用就可以获得整个城市的相关信息。
通过大数据开放来提升政务服务。韩国的“智慧首尔地图”就是各国智慧城市发展策略中的代表。通过一系列的手机应用,市民可以查询残疾人设施、首尔市免费无线网络热点、公厕、餐饮及行政信息。
在2011年,首尔就提出了“智慧首尔2015”计划,目标是到2015年让首尔成为世界上最方便使用智能技术的城市,建成适应未来生活的基础设施、成为有创造力的智慧经济都市。“智慧首尔2015”计划指出,公共数据已成为具有社会和经济价值的重要国家资产。韩国未来创造科学部预测,大数据产业到2017年可以创造1000个企业,创造5万个以上就业岗位。
国家战略
大数据被视为创新和生产力提升的下一个前沿。对数据资源的开发利用能力已成为国家竞争力的要素之一,也是国家整体实力的重要体现。由此,数据经济、数据管理、数据强国等新概念应运而生,各国政府也加强对大数据的扶持,并上升到国家战略高度。
美国率先将大数据从商业概念上升到国家战略。2012年3月,美国政府公布了2亿美元的《大数据研究发展计划》,提出通过提高美国从大型复杂数据中提取知识和观点的能力,加快科学与工程研究步伐,加强国家安全。同年11月公布的具体研发计划涉及各级政府、私企及科研机构的多个大数据研究项目。
在日本,安倍内阁于2013年6月发布了“创建最尖端IT国家宣言”,全面阐述了2013年至2020年间以发展开放公共数据和大数据为核心的国家战略,强调“提升日本竞争力,大数据应用不可或缺”。
在英国,政府在2013年注资1.89亿英镑(约3亿美元)发展大数据项目。同年发布的《英国农业技术战略》更是强调英国今后对农业技术的投资将集中在大数据上,让英国的农业科技商业化,将英国打造成农业信息学世界强国。
在大数据红遍全球的背景下,无论是领先发展的欧美,还是迎头赶上的东亚,发展大数据除了加强基础设施建设、加快普及高速互联网,更重在推动数据开放、优先发展推进与民生保障服务相关的数据。
根据中国国务院印发的《促进大数据发展行动纲要》,国家发展改革委有关负责人日前表示,2018年以前,中国要建成国家政府数据统一开放门户,推进政府和公共部门数据资源统一汇聚和集中向社会开放,实现面向社会的政府数据资源一站式开放服务。
新加坡是世界网速最快的国家之一,在2011年6月启用了政府分享公开数据平台,开放了来自60多个公共机构的近9000个数据库。利用开放数据,企业和有关部门已开发了100多项应用,涉及停车信息、公厕甚至野猫管理等。市民只需一个名为“新加坡通行证”的密码,就可以享受相关电子政府服务的便利。
在南半球的澳大利亚,政府信息管理办公室在2013年8月发布了公共服务大数据战略,以“数据属于国有资产,从设计着手保护隐私、数据完整性与程序透明度”等原则出发,推动公共行业利用大数据分析进行服务改革。澳大利亚政府的开放数据平台,目前已涵盖100多个机构部门的1000多个数据库,向公众提供数据下载上的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29