京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Springboard,我们的学生经常问我们这样的问题“数据科学家是做什么?”或者“数据科学家每天的工作是什么样子?”这些问题很棘手。答案因角色和公司不同而不同。
因此,我们咨询了Raj Bandyopadhyay, Springboard数据科学教育主管,看看他是否有一个更好的答案。Raj提供了下图中的框架,它既可以帮助你了解数据科学家的日常工作,也可以帮你理解数据科学解决问题的流程,Raj称之为“数据科学工作流程”。
在解决问题之前,首先要做的是把问题界定清楚,去定义它到底是什么。你必须能够将数据问题转化为可操作的东西。
你经常会从持有问题的人那里得到模糊的描述。你必须培养直觉:通过问一些别人不会问的问题,把这些模糊描述转换成可操作的问题。
假设您正在为公司的销售人员解决问题,你应该了解他们的目标是什么以及数据问题背后真正的本质是什么?在你开始考虑问题之前,你必须与他们合作,明确界定问题。正确地提问是这一步骤的关键。你应该弄清楚销售过程是什么样子,谁是客户。你需要尽可能了解背景知识以便将数据转换为洞察力。为此,你应该问类似下面的问题:
(1)谁是顾客?
(2)他们为什么买我们的产品?
(3)我们如何预测,一个客户是否会买我们的产品?
(4)表现好和差客户细分群体之间的区别在哪里?
(5)如果我们不能把产品卖给目标客户,我们的损失有多大?
在回答你的问题时候,销售人员可能会发现他们想知道为什么产品在部分细分客户群体中的销售不及预期。他们的最终目标可能是确定是否继续投资于这些群体,或是降低它们的优先级。这样你进一步细化了问题,针对细化后的问题发掘答案。在这个阶段的最后,你应该有了所有你需要解决问题的背景知识。
一旦定义好了问题,你需要通过数据来寻找解决方案。这一进程中要想清楚需要什么样的数据?通过什么渠道可以获取这些数据?是要内部数据库数据还是需要购买外部数据?
或许你可能会发现,你要数据都存储在公司的客户关系管理CRM系统中,那么就可以将数据用CSV文件的形式导出。
现在,你有了原始数据,但是还需要为后续的分析做数据预处理。通常情况下,数据都是杂乱无章的,特别是没有很好地存储的情况下。很多东西都可以导致后续分析的错误:null值,重复值和缺失值。对数据的精心核查才能保障从数据中得到有价值的见解。
你要检查以下常见错误:
(1)缺失值,例如客户没有初次接触日期
(2)损坏值,如无效输入项
(3)时区差异,也许你的数据库没有考虑到用户处在不同的时区
(4)日期范围错误,也许你会有没有任何意义日期数据,比如销售开始前的注册数据。
你需要对数据文件的行和列进行统计,并对某些值进行测试,看看它们是不是有意义。如果您发现没有意义,你需要删除数据,或者使用默认值替换它。这里,你需要利用你直觉:如果客户没有初次接触日期,是否就真没有初次接触日期?或者你可以询问销售人员,是否是把初次接触日期的数据弄丢了?一旦你完成数据清理工作,你就可以开始准备探索性数据分析。
当你的数据是干净的,你就应该开始使用它!这里的困难在于如何对真正有见解的想法进行测试。你必须为数据科学项目设定最后期限(销售人员可能正等待的分析),所以你必须对问题进行优先级划分。“你必须先看看最有趣的模式:帮助解释为什么某些客户群体的销量减少了。您可能会注意到,他们在社交媒体上不是非常活跃,只有少数人有Twitter或Facebook帐户。您可能还注意到,其中大部分人的年龄偏大,你可以开始跟踪这些模式进行更深入分析。
这一步你要应用统计学、数学和数据科学工具,围绕有趣的模型进行详细分析。
在这种情况下,你可能需要创建预测模型比较业绩不佳组客户与客户平均。你可能会发现,年龄和社交媒体活跃度是影响购买产品的显著因素。
如果你在问题界定阶段就已经了解了很多背景信息,你可能会意识到该公司营销活动集中在社交媒体上与年轻受众进行互动。但是某些客户却喜欢电话的交流,而不是社交媒体。你开始看到该产品的营销方式对销售的影响,也许那部分客户是不应该流失的群体。公司应该从过分依赖社会化媒体营销策略向更加个性化的策略转变。
现在,您可以将所有数据定量分析得到的定性见解,通过讲故事的方式说服相关人员采取行动。
让销售人员理解你们的发现很重要。沟通交流的有效性决定了你的方案是否被采纳。
你应该撰写一个有令人信服的故事,将自己的知识与数据恰当嵌入其中。你可以从解释老年人中销售业绩不佳背后的原因开始;你可以巧妙地将销售人员给你信息和数据中发现见解结合起来;然后你转到解决问题的具体办法:可以将部分资源从社会化媒体转移到私人电话推销中。
了解以上步骤,对于系统思考数据科学有极大的帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12