
数据分析师到底是做什么的
从事数据分析师工作这么久,还是还是想知道数据分析师到底是做什么的?相信这个问题也困扰着大家。
他们总关心一些专业词汇(arpu,pcu,还有很多我也不知道的英文字母组合),图表怎么做,excel工具怎么用,结论怎么写…下面我说说我是怎么看数据分析的:数据分析是一个方法,但不是唯一的方法数据分析的优点是相对客观,但是缺点也很明显,人力和时间成本很高。
游戏里的数据分析无非就是要实现2个目的:1.发现现存问题的本质,并解决他(99%)2.发现一些趋势,以便未来做的更好(1%)其中第一个目的占99%!第二个目的我没见人专门做过,我自己也从来没有专门做过类似的事情,最多就是数据看多了,瞎猫碰上死耗子,发现点趋势来。所以数据分析主要是为了发现问题,解决问题而做的。发现问题和解决问题的方法有很多种,有时候数据分析并不是最好的办法。例如:新版本很快就要更新了,一还有一堆准备工作没有完成,这个时候你发现新出的装备卖的很不好,远远不如预期。
如果你还花很多时间去分析为什么那个装备卖的不好,那你就耽误了更重要的新版本!当时间不够的时候,分清主次,别再数据分析上浪费时间。找不同类型的用户聊聊,基本就能发现主要的问题所在了。数据分析不是万能的数据分析能够发现代码的问题根源,但是很难解释用户的行为。点击打开大图 如上图中,当我们通过数据发现游戏里的大R流失了。数据能做的就已经到尽头了,数据无法告诉我们流失的具体原因。数据不能告诉我们用户是因为公司破产而停止玩游戏,还是因为跑去玩其他游戏了,还是因为玩累了不想玩了… 数据很多时候也解释不清楚,只是通过数据的不断细分,我们能把问题的范围缩小再缩小,而不是在茫茫大海里找一根针。
所以再牛B的数据分析师,如果不了解产品,不了解用户,也没用!数据分析不是把图表和文字堆砌出来就行了 见过很多数据分析:排版整洁,图表做的很漂亮,每页都有公司logo和版权说明,乍一看感觉好牛B! 但再一看内容,纯属一堆垃圾! 数据采样完全不科学 根本没有细分数据,只有一堆说明不了问题的宏观数据 没有任何对比数据 数据完全不能支撑“分析”得出的结论
简单总结:结论全是主观臆断,跟堆砌的数据和图表完全无关。数据分析师是一个很严谨的事情,每个结论都应该从数据中得出,数据不能说明的问题只能是猜测。所以当我们写下每一个结论的时候,一定要搞清楚这个是“我觉得是这样”,还是“我从数据中发现是这样”!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07