
在大数据时代你用什么来做数据分析的
数据规模的持续增长早已是行业定律,据了解,互联网上每一秒钟传输的视频,需要花费一个人5年的时间才能看完。可见数据量之大,数据增长之快已经越来越超乎我们的想象。商业决策也开始越来越依赖数据的分析,如此,建立正确的数据联系,形成准确的数据分析就成为抓住时代机遇的关键。
近日,笔者从外媒看到几款实用的大数据模型工具,部分笔者亲测好用哦!让我们来看看都有什么软件吧!
PowerDesigner
PowerDesigner
PowerDesigner是Sybase的企业建模和设计解决方案,采用模型驱动方法,将业务与IT结合起来,可帮助部署有效的企业体系架构,并为研发生命周期管理提供强大的分析与设计技术。功能包括:完整的集成模型,和面向包含IT为中心的、非IT为中心的差异化建模诉求。
PowerDesigner将多种标准数据建模技术集成一体,并与.NET、WorkSpace、PowerBuilder、Java、Eclipse等主流开发平台集成起来,进而为企业提供哦你合理的数据分析和具有针对性的解决方案。
ER/Studio
ER/Studio
ER/Studio同时支持逻辑模型和物理模型,是一套模型驱动的数据结构管理和数据库设计产品。主要用于帮助企业发现、重用和文档化数据资产。
ER/Studio通过可回归的数据库支持,使数据结构具备完全地分析已有数据源的能力,并根据业务需求设计和实现高质量的数据库结构。易读的可视化数据结构加强了业务分析人员和应用开发人员之间工作沟通的能力。相比PowerDesigner,ER/Studio Enterprise更能够使企业和任务团队通过中心资源库展开协作,提高团队作战能力。
品牌:空格 服务器2Sparx Enterprise Architect与CA ERwin
Sparx Enterprise Architect
Sparx Enterprise Architect
Enterprise Architect拥有完整的建模生命周期,是一个拥有丰富功能的数据建模工具。主要功能是:提供建模工具、特性丰富系统设计、端到端的全面跟踪,还能提供直观高效的工作界面。
Enterprise Architect帮助企业用户快速建立强大的可维护的系统,而且很容易在共享项目中扩展到大型的协作团队中去。例如Enterprise Architect可以连接到SQL服务器、MySQL, Oracle9i, PostgreSQL, MSDE,Adaptive Server Anywhere 和 MS Access backends以实现知识库共享。
CA ERwin
CA ERwin
CA ERwin是一个功能强大的大数据分析管理工具。它为设计、生成、维护高水平的数据库应用程序提供了非凡的工作效率。 从描述信息需求和商务规则的逻辑模型,到针对特定目标数据库优化的物理模型,ERwin帮助您可视化地确定合理的结构、关键元素,并优化数据库。
CA ERwin Data Modeler提供了许多版本以帮助管理您的企业数据。
Standard Edition提供了桌面设计和建模功能,可使用简单的图形界面管理您的复杂数据环境。
Workgroup Edition旨在为数据建模者团队的协作建模提供帮助。
Navigator Edition提供了对ERwin数据模型的只读访问。
Community Edition是免费的入门级数据建模工具,它是CA ERwin Data Modeler Standard Edition产品的一个子集。
另外,CA Erwin有一个很活跃的用户讨社区,使得用户之间可以分享知识和各种经验,相互学习。
据统计,2014年全球大数据市场规模达到285亿美元;到2020年,全球大数据市场规模将达到1263.21亿美元,同比增长17.51%。大数据分析师已经成为一种专业、稀缺的资源,如何利用好身边的数据分析工具,建构出完善的数据分析模型就是我们需要学习的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07