
使用Redis开发应用程序是一个很愉快的过程,但是就像其他技术一样,基于Redis的应用程序设计你同样需要牢记几点。在之前,你可能已经对关系型数据库开发的那一整个套路了然如胸,而基于Redis的应用程序开发也有许多相似的地方,但是你必须牢记以下两点——Redis是个内存数据库,同时它是单线程的。因此,在使用Redis时,你需要注意以下几点:
1. 掌控储存在Redis中的所有键
数据库的主要功能是储存数据,但是对于开发者来说,因为应用程序需求或者数据使用方法的改变,忽略存储在数据库中的某些数据是非常正常的,在Redis中同样如此。你可能忽视期满某些键,也可能因为应用程序的某个模块弃用而忘掉这些数据。
无论哪种情况,Redis都存储了一些不再使用的数据,平白无故的占用了一些空间。Redis的弱结构数据模式让集中储存的内容很难被弄清,除非你为键使用一套非常成熟的命名法则。使用合适的命名方法会简化你的数据库管理,当你通过你的应用程序或者服务做键的命名空间时(通常情况下是使用冒号来划分键名),你就可以在数据迁移、转换或者删除时轻松的识别。
Redis另一个常见用例是作为热数据项作的第二数据存储,大部分的数据被保存在其他的数据库中,比如PostgreSQL或MongoDB。在这些用例中,当数据从主存储移除时,开发者经常会忘记删除Redis中对应的数据。这种存在跨数据存储的情况下,通常需要做级联删除,这种情况下,可以通过在Redis配置保存特定数据项的所有识别符来实现,从而保证数据在主数据库被删除后,系统会调用一个清理程序来删除所有相关副本和信息。
2. 控制所有键名的长度
在上文我们说过要使用合适的命名规则,并且添加前缀来识别数据走向,因此这一条看起来似乎与之违背。但是,请别忘记,Redis是个内存数据库,键越短你需要的空间就越少。理所当然,当数据库中拥有数百万或者数十亿键时,键名的长度将影响重大。
举个例子:在一个32位的Redis服务器上,如果储存一百万个键,每个值的长度是32-character,那么在使用6-character长度键名时,将会消耗大约96MB的空间,但是如果使用12-character长度的键名时,空间消耗则会提升至111MB左右。随着键的增多,15%的额外开销将产生重大的影响。
3. 使用合适的数据结构
不管是内存使用或者是性能,有的时候数据结构将产生很大的影响,下面是一些可以参考的最佳实践:
取代将数据存储为数千(或者数百万)独立的字符串,可以考虑使用哈希数据结构将相关数据进行分组。哈希表是非常有效率的,并且可以减少你的内存使用;同时,哈希还更有益于细节抽象和代码可读。
合适时候,使用list代替set。如果你不需要使用set特性,List在使用更少内存的情况下可以提供比set更快的速度。
Sorted sets是最昂贵的数据结构,不管是内存消耗还是基本操作的复杂性。如果你只是需要一个查询记录的途径,并不在意排序这样的属性,那么轻建议使用哈希表。
Redis中一个经常被忽视的功能就是bitmaps或者bitsets(V2.2之后)。Bitsets允许你在Redis值上执行多个bit-level操作,比如一些轻量级的分析。
4. 使用SCAN时别使用键
从Redis v2.8开始,SCAN命令已经可用,它允许使用游标从keyspace中检索键。对比KEYS命令,虽然SCAN无法一次性返回所有匹配结果,但是却规避了阻塞系统这个高风险,从而也让一些操作可以放在主节点上执行。
需要注意的是,SCAN 命令是一个基于游标的迭代器。SCAN 命令每次被调用之后, 都会向用户返回一个新的游标,用户在下次迭代时需要使用这个新游标作为 SCAN 命令的游标参数, 以此来延续之前的迭代过程。同时,使用SCAN,用户还可以使用keyname模式和count选项对命令进行调整。
SCAN相关命令还包括SSCAN 命令、HSCAN 命令和 ZSCAN 命令,分别用于集合、哈希键及有续集等。
5. 使用服务器端Lua脚本
在Redis使用过程中,Lua脚本的支持无疑给开发者提供一个非常友好的开发环境,从而大幅度解放用户的创造力。如果使用得当,Lua脚本可以给性能和资源消耗带来非常大的改善。取代将数据传送给CPU,脚本允许你在最接近数据的地方执行逻辑,从而减少网络延时和数据的冗余传输。
在Redis中,Lua一个非常经典的用例就是数据过滤或者将数据聚合到应用程序。通过将处理工作流封装到一个脚本中,你只需要调用它就可以在更短的时间内使用很少的资源来获取一个更小的答案。
专家提示:Lua确实非常棒,但是同样也存在一些问题,比如很难进行错误报告和处理。一个明智的方法就是使用Redis的Pub/Sub功能,并且让脚本通过专用信道来推送日志消息。然后建立一个订阅者进程,并进行相应的处理。 本文来自:CDA数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28