
初创公司必须重视大数据潜力的四大理由
随着物联网在世界各地渗透,大数据、数据计算和数据管理浮现在科技领域的最前沿。数据无处不在,以万亿度量。对数据湖的正确分析有助于企业做出明确的决定,从而提高生产率,进而刺激投资回报率快速增长。
来自福布斯的统计结果显示:89%的商业领袖认为大数据将像互联网一样给业务带来革命性的变革。强有力的迹象表明企业已经开始利用大数据带来机遇。
几年后,对所有的行业领导者而言,从这个巨大的机遇中受益都是一个巨大的挑战。随着时间的推移,大数据行业热度越来越高,也在很多领域帮助了初创公司,这些领域包括:库存管理、营销、运营、客户服务和广告等。以下是关于企业受益与大数据的有趣例子:
用大数据分析校正增长
大数据可以带来业务增长模式的显著转变。业务中已经存在的销售和营销数据可以解释很多客户的要求。为了获取完整的客户需求,必须进一步组织和策划。
通过推出新的产品和服务,大数据可以帮助初创企业更快得识别、触及正确的目标市场,提高市场投资的回报率。使得企业能更快理解客户需求并按照客户的行为模式提供更新和产品。
用正确的工具跟踪新客户
大数据应用的日益普及,从巨量数据中寻找最佳数据和分析数据的自动化过程有助于预测客户喜好,进而满足客户需求。使用正确的工具分析竞争对手,跟踪社会媒体以及研究销售报告等可以发现目标用户的购买模式。
例如:利用谷歌分析可以更好得理解网站流量,MixPanel有利于衡量手机应用程序使用模式的好坏,利用SproutSocial和Hootsuite可以追踪社交媒体活动的影响。InsightSquared可以与诸如QuickBooks、Sales Force之类的业务工具捆绑以取代电子表格进行数据分析,从而重组、提取可操作型数据。
经济型实时解决方案
大数据技术通常需要付出昂贵的代价。然而,随着创新技术在市场上应用,大数据成本将会降低。各种云计算和软件即服务的使用使组织能更好得利用大数据而不需高额的成本。
高德纳公司(Gartner)最近指出:投资大数据的公司比例上升。由于低成本云计算解决方案的出现,初创型企业可以跨地区进行大数据战略而不需要花费基础设施成本。无需投资任何资源和服务器,企业就可以利用大数据。
以有限的预算提高生产力
初创型企业没有犯错的机会。他们必须花好每一分钱。大数据技术允许客户和用户用有限的预算进行“尝试-失败-学习-重新开始”的循环。除了随时随地获得企业经营经验外,初创型企业也可以减少市场和广告宣传的成本。
用这种方式,组织可以更加积极得应对市场变化的需求并有强健的设施。例如,基于云计算的设施可以用来在推出产品的同时执行完整的活动,大数据能力可用来提取来自社交媒体和其他渠道的实时信息,并使得企业更好得管理目标市场。因此,初创型企业可以在短时间内比竞争对手更快得增长市场份额。
结论
在全球经济的每个领域中,数据无处不在。数十亿的传感器集成在物质世界的智能汽车、手机和工业机器等设备中。这些设备在互联网时代中被创造和利用。来自世界各地的不同社会阶层都能按需及时连接到大量可用的数据。
在制作和完成商业计划时,考虑大数据如何适应结构是一个明智的决定。这时,其他日常任务看似关键,但从长远来看,花时间规划如何大数据技术是必须的,因为大数据能给你的业务带来巨大的变化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07