京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代!将颠覆传统
信息爆炸时代,大数据统计降临到商业、经济、政治等领域,成为备受推崇的决策工具。大数据成为一场基于时代发展的IT洞察,是基于人类生产生活所带来的数据和人机、机器与机器之间更紧密通讯带来的数据聚合。甚至有人说:得大数据者得天下。
但是,大数据到底离我们有多远,是不是只有决策者才需要大数据,或者说大数据只是为决策者服务的?答案显然是否定的,在这个大数据时代,我们每个人都是大数据的创造者,每个人也都是大数据分析福利的享用者。
随着互联网+,工业4.0等概念的提出,我们更要认清,国家正在加大力度让传统政府信息化;大数据使我们的生活更加舒适,也使我们的行为更加透明化。
名家定义大数据
Gartner:"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据科学家John Rauser:大数据就是任何超过了一台计算机处理能力的庞大数据量。
分析师布赖恩·霍普金斯和鲍里斯 · 埃韦尔松提出大数据的 4 项典型特征:海量 ( Volume ) 、多样性 ( Variety ) 、高速 ( Velocity ) 和易变性 ( Variability ) 。
定义大数据
《互联网周刊》:"大数据"的概念是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。
著名咨询公司麦肯锡:大数据指的是大小超出常规的数据库工具获取、存储、管理和分析能力的数据集。但它同时强调,并不是说一定要超过特定TB值的数据集才能算是大数据。
如果您听不惯名家定义的大数据,请随我来看看,生活中大数据在哪里?它是否真的像传说中的那么神奇?
大数据故事:啤酒与尿布
生活中,处处体现着大数据
"啤酒与尿布" 的故事产生于 20 世纪 90 年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下," 啤酒 " 与 " 尿布 " 两件看上去毫无关系的商品会经常出现在同一个购物篮中。
"啤酒"和"尿布" 两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究 " 啤酒与尿布 " 关联的方法就是购物篮分析(market basket analysis)。
商品相关性分析是购物篮分析中最重要的部分,目前,购物篮分析的计算方法都很成熟,在进入 20 世纪 90 年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分。由此可见,大数据其实体现在生活的每一个角落。
啤酒与尿布,看似风马牛不相及的商品,经过大数据的分析,得出了惊人的结论,通过这个发现,我们可以制定与之对应的策略,提高超市业绩,也发现了荒谬背后的逻辑。
大数据故事:纸牌屋
《纸牌屋》这部火遍了全中国的,讲述一名美国白宫内的政客,如何不择手段的向上攀爬,竞选成为美国总统电视剧,究竟是如何取得巨大成功,它又与大数据擦出了什么样的火花呢?
纸牌屋
据外国媒体报道毫无疑问,《纸牌屋》是"大数据"出来的。据称,该部电视剧,运用所有收集的大数据,制作了一部观众最想看的电视剧。" 比你自己还要了解你 " 就是美国视频公司 Netflix 做的事。
用户只要登录Netflix,其每一次点击、播放、暂停、喜欢哪个桥段、哪里用户喜欢转发甚至看了几分钟就关闭视频,都会被作为数据进入后台分析。
每天用户在Netflix上产生3000万多个行为,Netflix 的订阅用户每天还会给出400万个评分,还会有300万次搜索请求,询问剧集播放时间和设备。这样一来,就能精确定位观众的偏好,利用大数据定制《纸牌屋》。
大数据故事:保护早产婴
医疗信息化 离不开大数据的支持
有数据显示,随着社会不断的发展,社会结构不断变化,产妇的产龄呈上升趋势,导致早产婴儿数量正在上升。在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过 3000 次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
随着医疗信息化的深入发展,医院业务数据呈爆炸式增长,几乎可以纳入大数据范畴。医疗信息化必然会拥抱大数据,医疗行业本身就是具有大数据特性的行业。
大数据故事:灌篮分析
篮球大数据 量化分析
专业篮球队会通过搜集大量数据来分析赛事情况,然而他们还在为这些数据的整理和实际意义而发愁。通过分析这些数据,可否找到两三个制胜法宝,或者至少能保证球队获得高分,做到知己知彼?美国的 Krossover 公司正致力于此。
教练只需将比赛视频上传到网上,在 24 小时之内,就会有四名 Krossover 员工组成分析团队,该团队将会从运动员每一个动作中作出完整、细致的分析。
之后,教练只要进入该网站,就可以检查任何他想要的 -- 数据统计、比赛中的个人表现、比赛反应等等。通过分析比赛视频,毫不夸张地分析所有的可量化的数据。队员们则可以在 Krossover 上把他们的一系列灌篮拼接在一个视频中,分享给亲朋好友。
智贵阳 大数据
2015 年 4 月 14 日,全国首个大数据交易所——贵阳大数据交易所正式挂牌运营并完成首批大数据交易。
贵阳国际大数据产业博览会
2015 年 5 月26日,在贵阳国际会议展览中心,举办了 2015 贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会。首届数博会共吸引国内外专业观众 6 万余人次参观、参与,相关新闻网络点击量超过 4.55 亿人次。
首届数博会累计有 35 家企业与贵阳市达成合作意向,签约大数据产业相关项目近 40 个,投资金额超过 200 亿元。预示着,贵州初步形成大数据产业发展的生态环境。
7月15日,科技部正式批复:同意支持贵阳省开展 " 贵阳大数据产业技术创新试验区 " 建设试点。贵阳试验区将加强与北京等发达地区的区域合作,探索优势互补、共同发展的新路径。
由此可见,在"互联网+"背景下,我国的大数据平台建设正在如火如荼的进行。像上面的例子,数不胜数,大数据不仅融入我们的生活,更在为社会创造利益。
大数据故事:预测未来
举一个简单的例子,2013 年年末,亚马逊获得了一项名为"预判发货"的专利,亚马逊未来可能会通过对用户行为数据的分析,预测顾客的购买行为,在顾客尚未下单之前提前发出包裹,从而最大程度地缩短物流时间。同时,亚马逊还会在运送途中向潜在顾客推荐该商品,从而提升判断精准度。
显然亚马逊运用的就是自己独有的庞大的用户群,以及用户此前的订单、用户的商品搜索记录、心愿单、购物车,甚至包括用户鼠标在某商品页面的停留时间的数据信息;这些数据信息汇集在一起,就能分析出用户目前的经济水平,生活状态甚至是用户可能会购买的商品。
亚马逊 "预判发货"
大数据在"有心人"的分析下,成为了预测未来的风向标;也可以成为创业者的好帮手。我们大胆猜测,未来的数据市场有可能会出现数据现货,期货交易。到了那个时候,数据进入资产负债表的时间就真的是指日可待了。
编外话:但究竟该如何利用大数据,避免过度信息化,以至于生活在透明的社会中;避免制度不完善而让犯罪分子有机可乘,避免无序信息贩卖。如何法律先行,让数据市场建立在完善的法律基础之上,是我们需要迫切考虑的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29