
大数据是如今安全分析领域的热门词语,可是很多企业用户对此持怀疑态度,因为许多公司耗费数年心血来构建“数据湖”(data lake),到头来发现不可能“将湖排干”、获得实用信息。
更为遗憾的是,如今的解决方案通常包括成本高昂的集群加上静态商业智能报告和“性感”的仪表板,这些报告和仪表板看起来不错,可是对实用、高效的安全分析带来不了多大帮助。着眼于分析,以及如何使用数据(非常有价值的数据),以便做出实时决策,发现关键模式,确定日常的、不断变化的安全政策,并大幅提升安全性,这才是真正实用的。
我们可以看到像谷歌、亚马逊和网飞(Netflix)这些公司,就认识到大数据是一种支持实时数据挖掘技术的出色工具,它可以挖掘分析具有快速度、种类和数量(3V)这些特性的复杂数据集。这些公司将大数据用作其业务的重要组成部分,并结合预测分析技术,以便深入了解顾客想要购买什么或观看什么。这应该是真正实用的安全分析技术应有的模式。
下面这五个“取样测试”(sniff test)将帮助你确定一种提议的方法是否会使用为你带来实用成效的大数据技术:
你的大数据解决方案完全涉及“3V”吗?
如果一家厂商完全着眼于大数据的速度、种类和数量这些问题,那么你的大数据系统可能比SIEM(安全信息与事件管理)来得高效,但是它到头来会成大数据存储陷阱。
厂商需要与你谈论贝叶斯理论、递归、分类算法、维度问题等话题,让大数据具有可预测性、真正可付诸行动,从而发挥其用途。是的,这听起来像是高深莫测的科学,可能很吓人,但这对分析具有动态性的安全事件而言必不可少。
如果你问“你说的安全分析是什么意思?”,会得到什么样的回答?
如果你听到关联、仪表板、查询和警报之类的回复,这是老一套。你需要听到机器学习库、数据立方体和余弦矩阵等。
一切都要基于大数/异数定律――这种技术充分利用大量数据和大量历史记录,自动构建知识库(并不断提高准确性),而不是用户需要盯着静态的聚合数据,或者手动定义明确的安全策略。
你的安全分析系统有闭环回路吗?
分析不是报告。分析有助于做出决策。安全分析不是“事后内容”――它们利用历史信息改进以后的机制。比如说,要寻找这种分析技术:修改你的实时监控机制,并告诉你将什么内容排除在外,重要的是,应专注于什么内容――而不是仅仅向你发送警报的那种分析技术。说到智能安全分析技术,数量增多的数据和合适的算法可大大改善分析和决策效果,并提高系统的效用。
你是否被领往集群越来越庞大这条路?
大数据界已变得很疯狂――只要做很少的工作,就能构建异构集群(大大增添了复杂性)。即使今天你能获得资金,也并不意味着明天也能获得资金;由于目的是聚合来自许多时期和数据源的数据,你需要确保,成本没有随着数据的增加而增加。
通常来说,更多的数据带来更好的效果,但是如果它让你倾家荡产,那也就毫无用处。你应该寻找可以高效扩展的平台。寻找这种系统:使用NoSQL方法、列式数据字段和内存中分布式并行处理架构。高效的系统不需要仅仅为了几TB数据而要部署一个节点,一个节点所能处理的数据量要大得多。
你的数据管理框架是否可以灵活处理各种各样的数据?
大数据有多层次、多种选择,有些会帮助你,而有些很复杂,让你束手无策。大数据支持众多数据类型,因而带来了丰富多样的信息。大数据已经迅速经历了好多代,所以,你要寻找注重简单的现代数据方案,比如使用JavaScript对象标注(JSON)这种灵活数据格式合并大数据的那种方案,这点很重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07