京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据应用因小而美
从去年年底,我开始思考怎么从“用数据”转变为“养数据”(即数据运营转变为运营数据),这一段时间我特别为收集什么样的数据而烦恼(more data, more problem)。而且,我也曾经想做一个特别大的适合多数人使用的数据应用出来(虚火上升),可是后来发现这在数据应用的起步阶段几乎是不可能的,一是找到可以解决大部分人需求的数据应用不容易,二是支付宝的数据非常丰富,需要考虑的因素很多,因素之间的联系又很复杂。
所以,我总结,当做数据应用的时候,数据就是等于原材料,当原材料一直处于变化的情况下,做出来的产品很容易出问题。体会数据和应用的关系之后,我最后决定从小角度切入,先做小应用出来(很好的瞄准器)。
这里说的“小”指的是应用的目标很具体。打个比方来说,对于一款数据应用,如果我的目的是分辨两种决策谁更好,差异在哪里,是很具体的问题。但如果我的目标是想知道如何让公司赢利,就是一个空泛的目标。
还请注意,“小”不是指数据量。许多人在没有获取足够数据,并且缺乏对数据理解的情况下做判断,其实是在享受自己的无知。
经过一番周折之后,也是按照小角度切入的想法设计数据应用,小角度切入设计产品可以做到具体和快速,而且可以避免因原材料的变化而导致的问题。
把数据放进“框”之中
此外,还不得不说到一个话题,在大数据的背景下,必须考虑数据之间的关联性。一个单独的数据是没有意义的,要把数据放在一个“数据框架”(情景)里面看才能看出问题。
为了把问题说得很明白,这里我拿前阵子一家电商公司找我讨论的问题举例子。这里不太方便公开这家公司的名称,暂以A公司代替。
A问我,要不要撤去导航网站的广告?因为怀疑许多老客户是从导航网站访问官网,而不是直接访问官网。
把这个问题说得再直白点,就是要弄清楚在导航做广告与A公司的业务关系。
那么,接下来要观察用什么“数据框架”,有助于做决策?
一、A公司当前的投入产出比
1、明确导航网站引进来的新、老用户占比如何?
2、引入的新、老用户的投入产出比和转化率如何?
3、推断撤去导航网站,对流失新老用户的影响?
二、与竞争对手的博弈
有一个问题可能会忽略,那就是你不做导航网站广告,你的对手就会立马进来。做数据框架的时候,要特别注意框架不是静态的,而是博弈的,需要把竞争对手因素算进来。
三、考虑时间因素
建立框时要考虑时间因素:
1、 用现在、过去和未来的眼光来审视导航网站,看看导航的质量是不是越来越好
2、 需要注意的是时间有延迟性,引进来的流量会有一些延迟,在两三个月后才能知道新用户的价值(life time value)。
总之,“数据框架”是商业分析师的灵魂所在,从框中找寻问题的关键因素及答案。不同的问题有不同的框,不能完全在此全部阐述。
数据是越多越好吗?
过去,有一个问题一直令我很困惑,现在的企业获取数据很容易,并且数据的增长速度非常之快,那么对于公司来说,到底要收集什么数据呢?收集多少数据?收集数据的边界在哪里?
后来在美国遇到Patil,他认为过去收集数据很难,而现在获取数据资源变得更容易。但是如果收集数据的出发点,不是为了解决问题,那么收集再多的数据有什么意思呢?
可是许多公司还有一个疑问是,现在收集数据不难,成本也不高,为什么不先收集数据再说呢?等以后需要数据来解决问题时再拿出来用也可以。Patil的答案我也很认同,他劝大家千万别这么想,用这样的理念来设计数据应用肯定会失败的。数据是没有边际的,我为此也痛苦了好一段日子。比如收集一个人的生日,可以精确到几分几秒,但这么精确的数据有什么应用,能产生什么价值呢?
事实上,数据是有生命周期的,比如从中国身份证号码是可以推断出性别的,但是过几年如果这个规则变了,导致我们基于数据所做假设和决策依据也就失去了意义(Data Broken)。更何况保存数据及其收集时的背景(Context)也是一件不容易的事情。所以说,在收集数据的同时,我们必须知道未来可以用来做什么,今天都想不出来的话,日后就更不容易想出来了。
打一个比方,今天很多电商老板会问重复购买率是多少,于是我们收集数据来计算重复购买率,却很少想到需要重复购买率来做什么决定。这就好比刻舟求剑这个故事,他告诉我们世事在变,我们不能只是机械的套用方法或指标。就像重复购买率有不同的定义,而做不同的决策需要不同定义的重复购买率。如果从一家投资公司的角度来看重复购买率,它想收购A公司,那么会从重复购买率来看整个A公司的健康程度或用户质量等。如果从A公司本身运营的角度来看重复购买率,那么它更关注的是日、周级别的重复购买率的变化趋势,或者当月新增客户有多少人在三个月后的重复购买,从而可以衡量每个月新增及存量客户的忠诚度和质量,找出改善的空间。知道了以上的背景之后才去选择用什么数据不是更靠谱吗?
如何用框架来做决定?
对此,我总结了四步走的方法:
第一,首先确定有什么问题,从解决问题的角度出发收集数据;
第二,把收集的数据整理好,放入一个“数据框架”内(这个框架是用来帮助决策者做决定的)。让决策者用框更清楚地看到数据与决策之间的关系,比如A公司在框架内要知道竞争情况、新老客户比例情况等因素,以及多种因素互相的关系。
第三,看框架与决策的关系,比如A公司与导航网站有三种选择,完全不合作,部分合作,全面合作。根据数据框架告诉A公司该怎么决策。如果发现数据框架与决策不能匹配,就必须返回到第二步。
第四,根据决策做出行动,检查行动是否达到了目的。如果行动了发现根本没达到目的,就要检讨整个链条,看问题出在哪里。是数据有问题吗?还是因为框架不对?或者是决策不对?是否还有数据没考虑进去?
所以,又回到之前我老说的话题,不懂商业就别谈数据。想要解决的问题越复杂,框架也越复杂。而对于现在多数还没有开始做数据应用的电商公司来说,一开始框架千万不要太复杂,一定是针对某个需解决的问题开始搭框架,令框架与决策之间的关系非常清楚。你的问题是什么,你的decison是什么,反过来你的框架又该怎么样。从小角度切入,从“小”做起。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06