京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业大发展、大机遇、大红利时代到来
“近年来大数据的采集并处理,存储、通信、管理、风险、挖掘、展现、应用和安全等技术正取得重大进展,互联网+新业态正在快速建立,国家工业、农业万众创新等大数据工程正不断涌现并取得显著的成效。”3月2日上午,在北京国家会议中心举办的“2016云上贵州·大数据招商引智推介会”上,嘉宾代表中国工程院院士、贵州省大数据专家咨询委员会主任李伯虎在演讲中称,大数据产业大发展、大机遇、大红利的时代已然到来,对于贵州来说,先发优势明显,领先地位突出。
作为首届贵州省大数据产业咨询委员会中的一员,并参与了贵州工业云部分工作,在短短两年中,李伯虎见证了贵州在大数据技术产业应用方面取得的瞩目成就。
李伯虎在演讲中介绍,2014年以来贵州省结合本省发展的需要和先天优势,抓住大数据时代的重大机遇,大胆探索先行先试,发展势头风生水起,实现了在大数据平台、商业模式创新、绿色数据中心、大数据交易、产业博览会、国家产业集聚与产业试验区、地方大数据法规、国家级实验室等诸多方面的八个率先,“正如习近平总书记所言‘贵州发展大数据确实有道理’,这便是对贵州大数据技术产业应用、发展成就的高度肯定。”
2015年9月,国务院发布的《促进大数据发展行动纲要》,正积极推动着中国大数据技术产业应用的快速发展。
李伯虎称,近年来大数据的采集并处理,存储、通信、管理、风险、挖掘、展现、应用和安全等技术正取得重大进展,基于泛在网络的,以泛在互联、数据驱动、共享服务、跨界融合、自主智慧、万众创新为特征的互联网+新业态正在快速建立,我们国家工业、农业万众创新等大数据工程正不断涌现并取得显著的成效。
“显而易见,大数据产业大发展、大机遇、大红利的时代已然到来,贵州省作为我国首批国家大数据综合试验区,先发优势明显,领先地位突出。”李伯虎说道。
对于贵州大数据技术产业和应用的再发展,李伯虎在演讲最后提出了5点建议:
第一、坚持贯彻国家提出的创新、协调、绿色、开放、共享的五大发展理念,推动贵州大数据技术产业应用的新发展;
第二、坚持贵州省提出来的“三个问题”、“四个理念”、“五个层次产业链”、“三个业态”、“三个中心”的“34533”发展框架,持续完善深化大数据技术产业应用的系统化新发展;
第三、坚持以新应用为导向,带动大数据技术产业应用的新发展,贵州省从2014年起推动建设工业云等7+N朵云,到现在发展为百花齐放的20朵云,丰富大数据新应用必将引领落实大数据技术产业和应用的创新和繁荣;
第四、坚持新兴新技术和应用领域技术深度融合,由于大数据技术产业应用的复杂性、综合性和艰巨性,因此必须充分融合云计算、互联网、移动互联网、智能科学技术、高性能计算、虚拟现实、增强现实、信息安全等信息技术和各应用领域技术的新成果,这样才能推动大数据领域技术产业和应用的创新突破。
第五、坚持政产学研用精,融合创新发展的系统工程发展机制。我国航天领域多年来积累的探索一代、预研一代、研制一代、生产一代、应用一代的系统工程方法,以及美国2012年提出的产学研用联合的国家制造创新网络计划值得借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29