
大数据产业大发展、大机遇、大红利时代到来
“近年来大数据的采集并处理,存储、通信、管理、风险、挖掘、展现、应用和安全等技术正取得重大进展,互联网+新业态正在快速建立,国家工业、农业万众创新等大数据工程正不断涌现并取得显著的成效。”3月2日上午,在北京国家会议中心举办的“2016云上贵州·大数据招商引智推介会”上,嘉宾代表中国工程院院士、贵州省大数据专家咨询委员会主任李伯虎在演讲中称,大数据产业大发展、大机遇、大红利的时代已然到来,对于贵州来说,先发优势明显,领先地位突出。
作为首届贵州省大数据产业咨询委员会中的一员,并参与了贵州工业云部分工作,在短短两年中,李伯虎见证了贵州在大数据技术产业应用方面取得的瞩目成就。
李伯虎在演讲中介绍,2014年以来贵州省结合本省发展的需要和先天优势,抓住大数据时代的重大机遇,大胆探索先行先试,发展势头风生水起,实现了在大数据平台、商业模式创新、绿色数据中心、大数据交易、产业博览会、国家产业集聚与产业试验区、地方大数据法规、国家级实验室等诸多方面的八个率先,“正如习近平总书记所言‘贵州发展大数据确实有道理’,这便是对贵州大数据技术产业应用、发展成就的高度肯定。”
2015年9月,国务院发布的《促进大数据发展行动纲要》,正积极推动着中国大数据技术产业应用的快速发展。
李伯虎称,近年来大数据的采集并处理,存储、通信、管理、风险、挖掘、展现、应用和安全等技术正取得重大进展,基于泛在网络的,以泛在互联、数据驱动、共享服务、跨界融合、自主智慧、万众创新为特征的互联网+新业态正在快速建立,我们国家工业、农业万众创新等大数据工程正不断涌现并取得显著的成效。
“显而易见,大数据产业大发展、大机遇、大红利的时代已然到来,贵州省作为我国首批国家大数据综合试验区,先发优势明显,领先地位突出。”李伯虎说道。
对于贵州大数据技术产业和应用的再发展,李伯虎在演讲最后提出了5点建议:
第一、坚持贯彻国家提出的创新、协调、绿色、开放、共享的五大发展理念,推动贵州大数据技术产业应用的新发展;
第二、坚持贵州省提出来的“三个问题”、“四个理念”、“五个层次产业链”、“三个业态”、“三个中心”的“34533”发展框架,持续完善深化大数据技术产业应用的系统化新发展;
第三、坚持以新应用为导向,带动大数据技术产业应用的新发展,贵州省从2014年起推动建设工业云等7+N朵云,到现在发展为百花齐放的20朵云,丰富大数据新应用必将引领落实大数据技术产业和应用的创新和繁荣;
第四、坚持新兴新技术和应用领域技术深度融合,由于大数据技术产业应用的复杂性、综合性和艰巨性,因此必须充分融合云计算、互联网、移动互联网、智能科学技术、高性能计算、虚拟现实、增强现实、信息安全等信息技术和各应用领域技术的新成果,这样才能推动大数据领域技术产业和应用的创新突破。
第五、坚持政产学研用精,融合创新发展的系统工程发展机制。我国航天领域多年来积累的探索一代、预研一代、研制一代、生产一代、应用一代的系统工程方法,以及美国2012年提出的产学研用联合的国家制造创新网络计划值得借鉴。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07