
本文将探究一个被称为二次规划的优化问题,这是一种特殊形式的非线性约束优化问题。二次规划在许多领域都有运用,比如投资组合优化、求解支持向量机(SVM)分类问题等。在R中求解二次规划有许多包,这次,我们将讨论一下quadprog包。在我们开始讲解案例之前,我们将先简短地介绍一下二次规划的机理。
对于一个二次规划问题,首先要考虑的就是一个二次目标函数:
Q(x)=12xTDx−dTx+c.
这里 x 在 ℝn 中是一个向量, D 是一个n×n 的对称正定矩阵,在 ℝn 中 d 是常数项约束,c 是一个标量常数。Q(x)函数通常以二次函数的形式出现,并且它高维的通项表达式是:
q(x)=ax2+bx+c
Q(x)的关键特性在于这是一个凸函数。
我们也对向量x构造一个线性约束集合,即x ∈ℝn。
我们把这些约束写成:
Ax=fBx≥g
这里,A 是一个 m1×n 的矩阵且约束为 m1≤n,BB 是一个 m2×n 的矩阵.向量 f 和向量 g的长度分别是m1和m2.
这是一种让我们可以充分考虑实际条件的标准型。比如我们让 x 强制满足
∑i=1nxi=1
的求和条件,或者满足ai≤xi≤bi的区间约束。接下来,我们将介绍如何将这些约束转化为矩阵表达。
用这个符号系统,我们可以简洁表示二次规划 (QP):
{minimizex∈ℝn:Q(x)=12xTDx−dTx+csubjectto:Ax=fBx≥g
考虑目标函数:
Q(x,y)==12[xy][2−1−12][xy]−[−32][xy]+4x2+y2−xy+3x−2y+4.
我们这个约束条件下的可行域内寻求最小化:
yyy≥≥≤2−x−2+x3.
我们可以找到这个可行域的顶点并在R画出整个可行域:
plot(0, 0, xlim = c(-2,5.5), ylim = c(-1,3.5), type = "n", xlab = "x", ylab = "y", main="Feasible Region") polygon(c(2,5,-1), c(0,3,3), border=TRUE, lwd=4, col="blue")
SHAPE \* MERGEFORMAT
想要用quadprog包求解二次规划,我们需要同时转化我们的目标函数和约束条件为矩阵形式。这里是官方文档的说明:
This routine implements the dual method of Goldfarb and Idnani (1982, 1983) for solving quadratic programming problems of the form min(-d^T b + 1/2 b^T D b) with the constraints A^T b >= b_0.
可惜官方文档多可读性不高,我们很难得知如何准确地转化二次型Q(x,y)为一个矩阵形式。首先,我们观察到,对于任意常数 c, 都存在MinQ(x,y)+c 和 Q(x,y)的解相等。因此,我们可以忽略二次规划中的常数项:
D=[2−1−12]d=[−32].
我们可以写出约束方程的矩阵形式:
⎡⎣⎢⎢1−1011−1⎤⎦⎥⎥[xy]≥⎡⎣⎢⎢2−2−3⎤⎦⎥⎥
因此:
A=⎡⎣⎢⎢1−1011−1⎤⎦⎥⎥Tb0=⎡⎣⎢⎢2−2−3⎤⎦⎥⎥
quadprog包默认是求解最小化问题,目标函数二次,约束一次。所以,我们的约束条件默认的形式也就是AX>=bvec。通常我们需要把一些原来是求极大值的问题或者<=约束通过乘以负号来转化。
这是R的完整实现:
· 参数Dmat表示海赛矩阵
· 参数dvet表示一阶向量,和Dmat的维数要相对应。
· 参数Amat表示约束矩阵,默认的约束都是是>=。
· 参数bvet表示右边值,由向量,和Amat的维数要相对应。
· 参数 meq 表示从哪一行开始Amat矩阵中的约束是需要被当作等式约束的。
(1/6,11/6) 点是唯一满足约束条件和 Q(x,y)的最小化目标,但 (−4/3,1/3)点才是 Q(x,y) 的最小值点。iterations,Lagrangian 和 iact 都是用来描述quadprog算法性能的。对于这些值之后我们将进一步讨论。现在,让我们先可视化二次规划的解。为此,我们在Q(x,y)的可行域边界添加一个外侧的等高线图。
在图中,深绿色区域表示Q(x,y) 表面目标函数值较小的解,而亮色表示目标函数值较大的解。红点是Q(x,y)的全局最小值点,而黄点表示二次规划的解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07