
这里有些关键的机器学习概念可以帮助我们理解这一领域的相关知识。
在这篇文章中,你会接触到一些相关的专业术语(常用的术语),它们用来描述数据和数据集。你也会学习到一些相关概念和术语,它们用来描述数据的学习和建模过程,而这些又给你的学习旅程提供了一些关于机器学习的宝贵经验。
机器学习方法可以从实际案例进行学习。对于我们来说,掌握数据的输入和各种描述数据的术语是很重要的,而在这一部分中,你会在涉及到数据的机器学习中学到一些相关术语。
但我在思考数据是什么样的时候,我的感觉一般都是行和列,就像是一个数据集图表或者是Excel的电子表。这是数据的传统格式,而且在机器学习中也是一种常见的格。其它数据如图像、视频,以及文本,而所谓的没有结构的数据并不会在这篇文章中进行描述。
展示一个相关例子、特征和数据集的形式的数据的图表
实例:数据的单行称之为实例。这是某一个域所观察的结果。
特征:数据的单列称之为特征。它是观察的一个组成部分,而它也被称之为一个数据实例的属性。一些特征也许会输入一个模型(预测值),而其它可能有输出或预测的特征。
数据类型:特征有其数据类型。它们也许是真实数或者是整数,又或者是分类值又或者又是序数。你可以有字符串、日期、时间或更多复杂的数据类型。但是,通常情况下,它们都会在使用传统机器学习方法的时候被换算成实数或者是分类值。
数据集:实例的集合是一个数据集,而且当我们使用传统机器学习方法的时候,我们通常需要几个不同的数据集处理不同的问题。
训练数据集:训练数据集就是一个我们通过使用机器学习算法进行建模的数据集。
测试数据集:一个用于检验我们模型精准度而不用于建模的数据集。我们可以把它称之为检验数据集。
我们也许会收集一些实例来建立我们的数据集,或者给定一个有限数据集,我们需要把它分解成若干个子数据集。
机器学习,确切来说是一个动态的学习算法。在这一部分中,我们会考虑几个学习方面的高级概念。
前序:机器学习算法通过一个叫归纳或者归纳学习的方法进行学习。归纳是一个合理的过程,它可以从一些特殊信息(训练数据)进行概括总结。
概括:概括这一过程是必要的,那是因为模型是由机器学习算法为我们准备的,而我们需要用这个模型,基于在训练过程中我们看不到的数据,我们会对它们进行预测或决策。
过度学习:当一个模型从一些训练数据中学习过多而不能进行概括的时候,这个过程称之为过度学习。结果就是处理数据的性能很差,而它有不同于训练数据。这也称之为过度拟合。
缺乏学习:当一个模型因为与它们相关的数据集提前结束学习过程,从而导致这个模型无法获得一个完整的结果,这就称之为缺乏学习。它的结果则是可以作一个好的概括但是对所有数据,包括训练数据集在内的处理的性能却很差。这也称之为欠拟合。
在线学习:在线学习就是当一个域变得可用的时候,这种方法会从来自这个域的数据实例进行更新。在线学习需要数据在噪音情况下具有很强的健壮性,但是也要产生一个符合这个域当前状态的模型。
线下学习:线下学习就是一个通过现成的数据进行创建的方法,而这个方法对未被观察的数据进行相关操作。这个训练过程可以被很好的控制和调整,原因在于训练数据的范围是未知的。在这个模型早已被创建好,同时在相关域发生了改变从而导致模型的性能可能被改变的情况下,这个模型不再进行更新。
监督学习:这是一个针对需要进行相关预测的问题进行概括的学习过程。一个“教学”过程会与一个有未知答案的模型进行比较,并对模型进行修正。
非监督学习:这是一个对不需要预测的数据的结果进行概括的学习过程。默认情况下,数据的结构都可以得到相关的确认和利用。
我们在之前的一篇文章 machinelearning algorithms就已经对监督学习和非监督学习过程进行详细的阐述。
一个由机器学习创建的产品被视为是一个程序的权利。
模型选择:我们可以这样认为,模型的设定和训练过程就是模型的选择过程。对于我们所拥有的每个模型的迭代可以让我们选择是直接使用这个模型,还是对它进行修改,甚至,算法的选择也是模型选择过程的一部分。然而,每个模型都存在一个共同的问题,那就是对于一个可能被选到的数据集的一个给定的模型以及模型的设置会提供一个最终的模型选择。
诱导偏差:偏差就是选定模型所产生的限制。每个模型都存在其自己的偏差,这也引入了模型的误差,以及对每个模型进行定义时产生的误差(它们是来自观察的概括)。偏差是通过一个包含模型的设定以及产生一个模型的算法的模型所做的概括引入的。一个机器学习方法可以创建一个或高或低的模型,而相关的手段可以对一个误差较高的基本模型进行一定程度的误差消除。
模型方差:方差就是检验对已经进行过训练的数据建立的模型是否灵敏的术语。一个由数据集产生的模型的机器学习方法,都有一个或大或小的方差,而消除方差的相关手段有在不同的初始化环境下对一个数据集进行重复运行,然后取平均值精准度作为模型性能好坏的参考标准。
偏差方差权衡:模型的选择可以被认为是一个权衡偏差和方差的过程。一个误差较小的模型有较大的方差,这时我们要对相关数据进行多长且长时间的训练以求得到一个合适的模型。一个误差较高的模型往往其方差比较小,所以训练时间短一点,但是要承担性能差的后果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10