
22名数据专家预测2016年数据科学与大数据的发展趋势
预测未来永远不是件容易的事情。但随着2015即将结束,我们不禁期待新的一年会来带什么。你最终能买到一辆自动驾驶的汽车吗?机器会比人更聪明吗?还有,数据科学世界将会发生什么?
我们不是算命先生,因此我们集合一群专家,问问他们是怎么想的。这里就是他们所说的话(排名不分先后):
2016年最大的数据趋势将是什么?“
2016年将是令人兴奋的——大数据会更加主流化。2016年也会成为那些仍然没有坚实大数据战略的公司开始落后的一年。在技术方面,我看到实时数据分析会显著增加,以及越来越多地使用机器学习算法。”
——Bernard Marr,大数据权威和畅销书作家
“2016年,大数据世界将更注重智能数据,无论多少。智能数据是宽数据(数据维度多),而不一定是深数据(数据量大)。只要数据包含特征丰富的内 容和上下文(时间、地点、关联、连接、相互依存等等),能够带来智能的甚至自动的数据驱动过程、发现、决策和应用,它们就是智能的。”
——Kirk Borne,Booze Allen Hamilton首席数据科学家,RocketDataScience.org创始人
“2015年,我们了解到过去12个全世界创造数据的90%。在这次大数据爆发之中,我看到许多高级负责人渴望尽可能快地赶上并促进这一切,以理解大量信息为他们带来的商业机会。
2016年——我希望看到这些负责人不仅注意他们如何尽可能多地捕捉信息中的商业价值,还有他们如何才能为客户创造最佳体验。2016年的大数据座右铭应该是‘我们必须从数据中创造比数据更多的价值’。”
——Jeremy Waite,EMEA Salesforce Marketing Cloud数字策略主管
“2016年将是属于深度学习的一年。数据将从实验室移动到图像识别和语言理解中部署的技术,并在多个方面超越人类表现。”
——Gregory Piatetsky,KDNuggets总裁
“我想说的是,面向大众的数据科学是一方面,另一方面是开源技术带来更多的破坏,到某种程度再也没有人知道Hadoop的意思是什么,以及更多从未听说过的项目试图拉平通向数据科学的时间。”
——Paul Zikopoulos,IBM分析VP
“(在过去的10年中)一个工具、服务和公司的生态系统已经建立起来以应对这些数字问题。这一点也不是为了贬低那些贡献。10年后,我们建立了一些惊人的技术和产品。这些问题大多数已经被解决。仍待解决的是那些真实物理世界中的数据问题。
大数据行业的下一个10年将解决这些问题。借用我们已有构建高可用、可扩展智能系统的知识,以及发明新的系统,用于分析在模拟行为和决策发生时传递的数据流。
这两者都是行业的自然发展,也是构成下一代数据行业的各种技术、人以及公司的根本性转变。”
——Drew Conway,Alluvium的CEO和创始人
“我认为2016年是大数据整合时机成熟的一年。不过,我看到整合在这个行业中里不同的方式出现,而不是一家分析公司接管另一家。我也看到分析被增 加到各种各样的企业软件中,从欺诈检测到营销自动化。这种整合将会横向发生在多种平台上,一些大数据创业公司可以很好专注在那些他们想要颠覆的垂直领域 中。”
——Jeff Vance,《连线》,《福布斯》和Startup50的记者
“明年,口头禅‘看情况’将成为有关如何分享/可视化/图表化数据所有问题公认的答案。接受受众范围、目的和数据集将成为常态。只要创建者向目标和受众传递了合适的东西,条形图、饼图甚至时装艺术会被视为可视化数据的有效方式。”
灵感来自我在计算机世界上最近的专栏:Living With Data
——Andy Cotgreave,在Tableau的技术布道者
“开放数据终于开始变得更好。发布信息的数据转储并期望公众筛选出它们不再足够。从公司透明度报告到政府支出再到犯罪统计资料,在2016年我们会迅速超越原油开放数据到更复杂的努力,让公众确实可以使用开放数据,而无需半先进分析或代码技能。”
——Alex Salkever,RWW作者和Silk营销主管
“我相信2016年的主要数据趋势将是专业数据头脑的崛起。每个组织部门(营销、财务、HR等等)越来越多地得到自己数据的访问和所有权。这种数据的民主化造成了每个团队对有基本数据科学素养的专业人员的需求。
因此,除了招聘全职数据科学家外,组织将寻找作为这种数据驱动文化的一部分的雇员。这些专业人士不需要具有真正数据科学家的能力层次,但是他们将要在一定程度上处理和分析自己的数据,并提出正确的问题。
这些专业人员需要数据头脑!因为具备这种能力的人很少,类似DataCamp这样的公司已经率先向专业人员提供所需技能,不中断职业生涯而把他们变成具有数据头脑的人。”
——Martijn Theuwissen,DataCamp联合创始人
“有几件事跳入脑海,但其中一件一直都在,那就是使用强加密保护移动消息、语音和文件交换的新应用的激增,无论是为企业还是为个人。没有很多人注意 到这一点,但他们确实这么做了。无疑,政府会不太高兴,但并没有阻止。特别是企业不在新人开放通信,因此我们正在走向一个一切都被加密的世界。”
——John Dunn,英国计算机世界和Techworld的编辑
“可识别个人数据的使用正在日益变成消费者和监管部门的关注点,以及客户信任的战场。那些积极主动地尊重和保护消费者数据的公司将成为赢家。隐私会是2016年杀手级的应用。”
——Tim Barker,DataSift CEO
“手机的人工智能(你的手机可以搞清你要干什么,并预测你下一步怎么做)。”
——Andrea Cox,Open Data Institute
“明年企业将会看到来自全部数据的价值。不只是物联网,而是一切可以提供洞察的全联网。从数据中获取价值,这里的数据不限于电子设备、传感器和机器,还包括来自服务器日志、地理位置和互联网的全部数据。”
——Scott Gnau,Hortonworks CTO
“2016年我要为那些企业提供资金,使他们能够创建API,把web变成,所有构成互联网管道的那些困难问题将会像网络中的李维斯一样。”
——Thomas Korte,AngelPad创始人
“让用户能看到各种因素对其业务正在变得比以往更加重要。有了合并内部和外部数据源的能力,用户现在可以访问更多数据的上下文,最终带来更多洞察和更好决策。轻松快速在分析中加入人口统计学或位置数据能帮助组织减少一些管理抉择的风险。”
——James Richardson,Qlik商业分析策略师
“机器学习将减少洞察力的杀手——时间。机器学习将取代手工数据处理和数据管理中的脏活累活。节省出的时间将加速数据战略。”
——Brian Hopkins,Forrester Research VP和首席策略师
“正如每一个行业,破坏的力量——安全、可持续性、速度和成本——正在推动数据中心设计、建造和运行方式的变化。这在整个2016年应该作为向用户提供应用和内容的能力继续,而收集和分析数据对商业成功也越来越关键。”
——Steve Hassell,艾默生网络能源的数据中心解决方案总裁
“成功标准将由大量数据的使用转向数据收集的质量。这将意味着每个公司的多样性也可能降低,但是将要收集的具体数据会变得更有效、实用和丰富。由于公司意识到他们收集的大多数数据没有被使用,只是占用存储空间,这些将变得更加明显,而对数据的使用也会受到更多监督。”
——Chris Towers,Innovation Enterprise大数据创新主管
“2016年将会有关于根据你有权访问的数据采取何种操作的一切。引入算法。算法确定行动,它们都是非常擅长非常具体操作的软件的非常具体的一部分,比人类可能做得更好。思考一个基于网站访问画像快速决定最佳广告或者在大量交易数据中发现离群值以确定欺诈的例子。”
——Mark van Rijmenam,畅销书作家和Datafloq创始人
“因为大数据需要大量处理能力,许多组织将利用基于云的,‘大数据即服务’的产品,由此可以得到他们信息的全部价值,而不需要任何相关资金支出。”
——Stuart Mill,CenturyLink区域销售总监
“2016年将看到,使用那些让商业用户能在无需IT手把手协助下执行全面广泛的自助式大数据探索的工具进行的大数据分析会得到扩张。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27