京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近年来,随着大数据在Google、Facebook等企业的成功应用,很多传统企业和初创公司都转向应用大数据技术挖掘数据金矿。现有企业累计了大量的工业数据,但是大数据的开发的复杂流程阻碍了企业快速从工业数据和商业数据中挖掘价值。行业专家(算法研究者)精通行业数据分析,却受限于编程复杂度和缺乏快速部署算法的方法,使很多创造性想法无法得到有效实施。在这个技术飞跃的时代,拥有大量工业数据的企业和技术专家们应该如何开展大数据技术的研发工作?
大数据从业者在数据搜集、数据探索、开发和部署的每一个阶段都会碰到各式各样的难题,不得不在不同的开发环境中进行切换,并为此付出了大量额外的时间和人力成本。在现有的数据资源上,如何对数据进行清洗、整合以及探索性研究,正是数据专家们发挥专长的地方;而这个过程所耗费的时间往往是编程实现的好几倍。今天多数的大数据方案都是依托Hadoop环境来做结构化和非结构化数据处理,如何把自己的Hadoop算法快速部署到实际的生产环境当中去,对很多企业的大数据部署也提出了挑战。
MathWorks公司的MATLAB软件在科研和工业生产上拥有大量的用户,而且在数据分析领域,MATLAB作为传统数据分析专业软件独树一帜。最近,针对大数据研发过程中关键点,基于大家熟悉的 MATLAB 开发环境,该公司提出一个完整的解决方案。下面我们就来看看他们关于大数据分析的流程,来自MathWorks公司的资深应用工程师陈建平对记者做了相关介绍。
从流程角度上看,整个大数据处理可以分成4个主要步骤。第一步是数据的搜集和存储;第二步是通过数据分析技术对数据进行探索性研究,包括无关数据的剔除即数据清洗,和寻找数据的模式探索数据的价值所在; 第三步是在基本数据分析的基础上,选择和开发数据分析算法,对数据进行建模。从数据中提取有价值的信息,这其实是真正的大数据的学习过程。这其中会涉及很多算法和技术,比如机器学习算法等; 最后一步是对模型的部署和应用,即把研究出来的模型应用到生产环境之中。
我们分别从流程和技术两个角度来看一下MATLAB开发大数据应用的特点。从流程上,我们可以把大数据应用的过程分成四步。
硬件数据的采集。MATLAB一直以来都硬件设备有着良好的支持,从专业数据采集设备,比如数据采集卡和测试仪器,到通用硬件,比如摄像机,都有统一的访问接口支持直接从MATLAB语言中抓取数据。结合不同的数据搜集、存储和访问手段,在一个平台中就能够完成大多数数据搜集和整理的工作。
MATLAB的工具箱覆盖了各个不同的领域,行业专家可以采用相应的工具箱,对数据进行初步处理和特征探索,比如通过滤波等信号处理手段滤去噪声,或者通过频谱检测,寻找语音数据的嚣叫。这是通用数据分析工具无法替代的。
第三步,数据建模。经过数据清洗、探索性分析,目的就是为了建立一个有效模型用于工业生产。典型的手段是求助于统计分析方法和机器学习算法,寻求合理的数学模型。一直以来,MATLAB就是一个传统的数据分析平台,最近几年MathWorks结合最新的机器学习算法和深度学习算法,推出了升级了神经网络和统计工具箱。机器学习不再需要编写大量的代码了,通过采用分类和聚类App,可以对数据进行拖放就可以完成机器学习的过程。直接从App分析结果中就可以得到最佳的预测模型。
现在,行业专家可以在前一个阶段得到的模型基础上,通过App和几个鼠标点击就可以把MATLAB代码发布成可执行程序、动态链接库、JAVA或者.NET包。部署工程师可以在这些结果上进行集成即可,减少了重新开发潜在的错误,加速了开发迭代的过程。

不管从大数据的处理流程上,还是从数据规模上,作为一个完整的开发平台,MATLAB提供了从数据搜集、数据分析、数据建模和应用部署等全面解决方案。用户可以不用过多关注编程细节,只需把有限的时间和资源投入到有效的分析过程中,让大数据应用开发成为一件简单轻松的事情。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12