京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近年来,随着大数据在Google、Facebook等企业的成功应用,很多传统企业和初创公司都转向应用大数据技术挖掘数据金矿。现有企业累计了大量的工业数据,但是大数据的开发的复杂流程阻碍了企业快速从工业数据和商业数据中挖掘价值。行业专家(算法研究者)精通行业数据分析,却受限于编程复杂度和缺乏快速部署算法的方法,使很多创造性想法无法得到有效实施。在这个技术飞跃的时代,拥有大量工业数据的企业和技术专家们应该如何开展大数据技术的研发工作?
大数据从业者在数据搜集、数据探索、开发和部署的每一个阶段都会碰到各式各样的难题,不得不在不同的开发环境中进行切换,并为此付出了大量额外的时间和人力成本。在现有的数据资源上,如何对数据进行清洗、整合以及探索性研究,正是数据专家们发挥专长的地方;而这个过程所耗费的时间往往是编程实现的好几倍。今天多数的大数据方案都是依托Hadoop环境来做结构化和非结构化数据处理,如何把自己的Hadoop算法快速部署到实际的生产环境当中去,对很多企业的大数据部署也提出了挑战。
MathWorks公司的MATLAB软件在科研和工业生产上拥有大量的用户,而且在数据分析领域,MATLAB作为传统数据分析专业软件独树一帜。最近,针对大数据研发过程中关键点,基于大家熟悉的 MATLAB 开发环境,该公司提出一个完整的解决方案。下面我们就来看看他们关于大数据分析的流程,来自MathWorks公司的资深应用工程师陈建平对记者做了相关介绍。
从流程角度上看,整个大数据处理可以分成4个主要步骤。第一步是数据的搜集和存储;第二步是通过数据分析技术对数据进行探索性研究,包括无关数据的剔除即数据清洗,和寻找数据的模式探索数据的价值所在; 第三步是在基本数据分析的基础上,选择和开发数据分析算法,对数据进行建模。从数据中提取有价值的信息,这其实是真正的大数据的学习过程。这其中会涉及很多算法和技术,比如机器学习算法等; 最后一步是对模型的部署和应用,即把研究出来的模型应用到生产环境之中。
我们分别从流程和技术两个角度来看一下MATLAB开发大数据应用的特点。从流程上,我们可以把大数据应用的过程分成四步。
硬件数据的采集。MATLAB一直以来都硬件设备有着良好的支持,从专业数据采集设备,比如数据采集卡和测试仪器,到通用硬件,比如摄像机,都有统一的访问接口支持直接从MATLAB语言中抓取数据。结合不同的数据搜集、存储和访问手段,在一个平台中就能够完成大多数数据搜集和整理的工作。
MATLAB的工具箱覆盖了各个不同的领域,行业专家可以采用相应的工具箱,对数据进行初步处理和特征探索,比如通过滤波等信号处理手段滤去噪声,或者通过频谱检测,寻找语音数据的嚣叫。这是通用数据分析工具无法替代的。
第三步,数据建模。经过数据清洗、探索性分析,目的就是为了建立一个有效模型用于工业生产。典型的手段是求助于统计分析方法和机器学习算法,寻求合理的数学模型。一直以来,MATLAB就是一个传统的数据分析平台,最近几年MathWorks结合最新的机器学习算法和深度学习算法,推出了升级了神经网络和统计工具箱。机器学习不再需要编写大量的代码了,通过采用分类和聚类App,可以对数据进行拖放就可以完成机器学习的过程。直接从App分析结果中就可以得到最佳的预测模型。
现在,行业专家可以在前一个阶段得到的模型基础上,通过App和几个鼠标点击就可以把MATLAB代码发布成可执行程序、动态链接库、JAVA或者.NET包。部署工程师可以在这些结果上进行集成即可,减少了重新开发潜在的错误,加速了开发迭代的过程。

不管从大数据的处理流程上,还是从数据规模上,作为一个完整的开发平台,MATLAB提供了从数据搜集、数据分析、数据建模和应用部署等全面解决方案。用户可以不用过多关注编程细节,只需把有限的时间和资源投入到有效的分析过程中,让大数据应用开发成为一件简单轻松的事情。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29