京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们不是JOBS,有时候我们需要了解用户的习惯,所以调研在某些特殊情况下是产品经理必须去做的。只有能跟用户真正互动,你的产品才能融入用户。
一、产品经理为什么要做市场调研?调研的目的是什么?
我们在做市场调研前,必须有一个自己的调研思路:我们要调研的对象,需要收集的数据,需要达到的效果等。只有有了明确的目标,才能获得更加有效的数据。
1. 通过调研了解市场需求、确定目标用户、确定产品核心,为了更好的制订MRD;
2. 为领导在会议上PK提供论据;
3. 提高产品的销售决策质量、解决存在于产品销售中的问题或寻找机会等而系统地、客观地识别、收集、分析和传播营销信息,及时掌握一手资源;
4. 验证我们定的目标客户是不是我们想要的,目标用户想要什么样的产品或服务;
5. 了解我们能不能满足目标用户的需求并且乐于满足目标用户的需求;
6. 找准产品机会缺口,然后衡量各种因素,制定产品战略线路;
7. 调研到最后,目标越明确,需求确明确,也就会觉得,产品越难做,难以打开市场等;
8. 对于全新的产品,调研前PM必须先自己有一个思路,然后通过调研去验证自己的想法的可行性。
二、市场调研的方式方法有哪些?怎样确定调研的维度?
1. 问卷调查、用户AB测试、焦点访谈、田野调研、用户访谈、用户日志、入户观察、网上有奖调查;
2. 做人物角色分析:设置用户场景、用户角色进行模拟分析;
3. 情况推测分析;
4. 调研的维度主要从战略层、范围层、结构层、框架层、视觉层来展开(不同的产品从不同的层次来确定调研的维度)
三、如何整理市场调研的数据?
对收集到的调研数据,我们需要整理出那些有效的数据,对于无效数据果断丢弃。对有效数据进行细致的处理、分析。
通过市场调研,我们收集了不少的数据,这些数据都是用户最直接的对产品的某种需求的体现。作为产品经理,我们视这些数据为宝贝,我们需要将这些数据进行整理,让他们变为珍宝。那我们该如何整理呢?
1. 将规范的数据按照维度整理、录入,然后进行建模;不规范的数据的话就必须得自己先通过一些定性的处理,让它变得规范,然后再用工具进行分析;
2. 封闭性的问题,设置选项归类即可。开放性的问题,建议还是先录下来,然后再头脑风暴整理出有用的东西;
3. 定性的,焦点访谈和深访,都可以录音,在事后可以形成访谈记录;焦点访谈的过程中,可以以卡片的形式或者其他的形式让用户做选择题,可以获取少量的有数据性的东西,其他的更多的是观点、方向性的,这个需要在整理访谈记录的时候根据问题来归纳整理;
4. 深度访谈的数据整理,我们以前会做头脑风暴,建立很多个用户模型,强行量化这些数据。这个方法比较有效,特别在做人群研究的时候。
四、如何书写市场调研报告?
对整理后的数据,我们最终需要形成书面的市场调研文档报告,以最直观的方式呈现给我们的BOSS,从而获得老板对产品的支持。
1. 对市场调研的数据分析后进行的说明总结,用图表或图形的形式最直观呈现;
2. 分析用户当前现状,用户对产品的需求点;
3. 报告的组成有研究背景、研究目的、研究方法、研究结论等相关内容;
4. 根据调研的时候的思路,将报告逐一完善,将数据分析的结论图表化,得出自己的结论总结出趋势和规律
五、数据分析的方式方法有哪些?
数据分析需要掌握数据统计软件和数据分析工具(分析工具如SPSS等);
数据分析的主要方法有:
1. 对比分析法:将两个或两个以上的数据进行对比分析,分析其中的差异,从而揭示这些事物发展变化的规律和情况。对比分为横向对比和纵向对比。
2. 结构分析法:被分析研究总体内各部分与总体之间进行对比分析的方法,即总体内各部分所占的指标。
3. 交叉分析法:同时将两个有一定联系的变量及其值交叉排列在一张表内,使各变量值成为不同变量的交叉点,一般采用二维交叉表进行分析。
4. 分组分析法:按照数据特征,将数据进行分组进行分析的方法。
5. 其他还有比如漏斗图分析法、杜邦分析法、矩阵关联分析法等等。
(数据分析方法可以参考:《谁说菜鸟不会数据分析》一书)
数据分析的方法有很多种,在进行数据分析的时候,选择有效的数据分析方法,能达到事半功倍的效果。
六、数据分析报告如何指导产品经理进行产品设计?
1. 根据调研结论 确定产品核心功能
2. 把数据分析的结果加入到整个迭代设计的过程中加速产品的迭代更新
3. 评估解决方案的可行性。根据实施的结果再去评估解决方案是否真的可行?是否还需要再改进,依此类推
4. 通过数据进行分析,得出用户的行为规律,为产品提供支撑
5. 日常的运营分析,及时发现产品问题
6. 产品后期设定一系列的运营指标进行运营监控,然后反馈产品迭代(指标主要包括:1、用户的反馈、2、产品的BUG、3、市场的反映、4、产品未来的发展方向、5、点击率、留存率等等)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01