京公网安备 11010802034615号
经营许可证编号:京B2-20210330
淘宝是怎么分析数据的
当下,网络已经走进我们的生活,不管是城市还是农村,都会通过网络让我们的距离更加的近,以前买东西都会去实体店,现在知道通过互联网就可以在网上购买自己想要的商品。大数据时代,只要可能量化的东西,我们都可以从数据结论当中分析出导致这个数据结果的过程。只不过,很悲哀的是:数据在你面前只是一堆数字,你只知道事情发展的结果——因为通过数据显示出来了,但却无法倒推出数据发展的经过。这个经过是非常重要的,因为一旦你能了解这个经过,你下次就可以规避这次出现的问题或者复制这次的成功。
可是绝大多数时候,更多的人却不知道自己是怎么做成这样的:做成功了,我不知道,做失败了,我也不知道,反正最终的结果就是这样了,想要着手优化,却无能为力。
所以,有条理有步骤的做事,会让所有的工作事半功倍。
在做数据分析之前,在拿到这个数据结果同时,我们首先需要明白一个东西:这个数据,对你来说有什么意义?
比如说:现在我的转化率是10%,那么这个转化率是高是低?怎样去评判?如果是低,是什么原因导致他低的?如果是高,又该怎么办?我还能不能把他做到更高?
首先来看第一个问题,如何来判断自己的转化率高还是低?其实很简单,你需要你参照,这个参照物,就是行业平均值。
在直通车官方信息发布平台可以看到。(在这个平台要自动跳转到万堂书院,我也不知道怎么一个情况。)在直通车流量解析和行业解析也可以看到,但这里请各位注意这里只是直通车的数据。但是我们可以根据这个,进行推测。
有了这个标准,那么我们就解决了第一个问题,假设我现在是T恤,我的点击转化率在10%,我是远远高于行业水平的,那么我可以说:我的转化率就是高。
接下来的问题是,我究竟是怎样做到这么高的?我还想再高怎么办?
这时候,需要运用我们最基本的公式来解答这个问题。
转化率=总成交笔数/点击量
转化率高,就说明每个流量都有更大几率带来更多的成交笔数。证明两个点:第一,流量相对精准,第二,产品相对吸引人。但是我需要大家排除一点:你的流量是在一定基数情况下产生成交的。
比如说,现在我有1个流量,成交1笔,我的转化率是100%,这难道就证明我的东西非常好了?除非我能够在今后的一个月或者更久远的时间里,都能保持这样的数据,那么我可以说,我的东西非常好。
所以,我现在流量是在一定基础的情况,我能够稳定的保持这样的转化率,那对我而言,我可以说,我的东西是比别人的要好。但是我应该要如何提升呢?
通过上面的公式,我可以知道,如果我要继续提升我的转化率,无非两个措施:第一,在流量不变的情况下,有更多的成交笔数;第二,增长流量同时增长我的成交笔数。
当然最好的结果是第一种选项,因为我维持现在的流量相对比较容易,成本不会发生变化;第二种选项呢,会抬高我的成本,因为流量就两个方面:免费和付费,我们知道免费流量提升,并不是手到擒来的事情,而付费流量提升,就会抬高的我的成本,所以我会优先选择第一种方案执行,增加我的成交笔数。
怎么做?各种关联促销,店铺活动,套装打包…不用我多说,简单来说,以前一个流量卖1件,现在你需要想法子一个流量卖2件。可能有人会有一个问题:为什么我不优化单品详情页面促成更多的成交?因为我单品转化率都10%,证明我的详情页面做得还是挺不错,那万一我优化失败,转化率反而跌了怎么办?所以我为了降低我自己的风险,必须先从其他方面入手。
那么如果是你的转化率低于行业水平呢?
很明显,还是这个公式,从成交笔数和流量上找原因,流量多,转化笔数少,先优化详情吧,我可以对比一下其他家卖得很好的是怎么做的,究竟是我客单价高,销量太少,还是有差评导致成交笔数很少的?这些问题,我们都可以弄得明白。而流量少,没转化,那就想想法子先把流量做上来,直通车要不要开?钻展要不要做?我能报一些活动吗?这都是解决问题的方法。
数据分析到这里,并没有结束,我通过反推,找到了我的一些问题所在,我现在要着手改进,那么我需要有个记录,我需要改进的地方。比如说,现在我发现我转化还是蛮不错,就是流量太少了,那我要开直通车,每天带来100个流量,冲击一下我的转化率,所以我记录下来:直通车,流量100个,转化率预计提升多少。因为每天的数据不太精准,波动比较大,所以七天观察一次,给我自己一个反馈,看看有没有达到我需要的目标。
如果没有,还是公式,我得稍微分析一下情况,如果达到,我下一步的计划又是做什么?
所以,分析数据,其实很简单,并没有想象中的复杂,时常有人说数学不好,干不来这个。可以告诉大家,我数学只有在小学三年的之前及格过,重要的是理清数据的逻辑,才能更好分析数据。
所以数据分析的步骤,大致就是这样:判断(究竟是高还是低?)——明白自身需求以及目标(优化点击率?转化率?ROI?)——分析(公式入手)——优化并记录(优化动作是什么)——反馈(是否达到需求目标)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09