
淘宝是怎么分析数据的
当下,网络已经走进我们的生活,不管是城市还是农村,都会通过网络让我们的距离更加的近,以前买东西都会去实体店,现在知道通过互联网就可以在网上购买自己想要的商品。大数据时代,只要可能量化的东西,我们都可以从数据结论当中分析出导致这个数据结果的过程。只不过,很悲哀的是:数据在你面前只是一堆数字,你只知道事情发展的结果——因为通过数据显示出来了,但却无法倒推出数据发展的经过。这个经过是非常重要的,因为一旦你能了解这个经过,你下次就可以规避这次出现的问题或者复制这次的成功。
可是绝大多数时候,更多的人却不知道自己是怎么做成这样的:做成功了,我不知道,做失败了,我也不知道,反正最终的结果就是这样了,想要着手优化,却无能为力。
所以,有条理有步骤的做事,会让所有的工作事半功倍。
在做数据分析之前,在拿到这个数据结果同时,我们首先需要明白一个东西:这个数据,对你来说有什么意义?
比如说:现在我的转化率是10%,那么这个转化率是高是低?怎样去评判?如果是低,是什么原因导致他低的?如果是高,又该怎么办?我还能不能把他做到更高?
首先来看第一个问题,如何来判断自己的转化率高还是低?其实很简单,你需要你参照,这个参照物,就是行业平均值。
在直通车官方信息发布平台可以看到。(在这个平台要自动跳转到万堂书院,我也不知道怎么一个情况。)在直通车流量解析和行业解析也可以看到,但这里请各位注意这里只是直通车的数据。但是我们可以根据这个,进行推测。
有了这个标准,那么我们就解决了第一个问题,假设我现在是T恤,我的点击转化率在10%,我是远远高于行业水平的,那么我可以说:我的转化率就是高。
接下来的问题是,我究竟是怎样做到这么高的?我还想再高怎么办?
这时候,需要运用我们最基本的公式来解答这个问题。
转化率=总成交笔数/点击量
转化率高,就说明每个流量都有更大几率带来更多的成交笔数。证明两个点:第一,流量相对精准,第二,产品相对吸引人。但是我需要大家排除一点:你的流量是在一定基数情况下产生成交的。
比如说,现在我有1个流量,成交1笔,我的转化率是100%,这难道就证明我的东西非常好了?除非我能够在今后的一个月或者更久远的时间里,都能保持这样的数据,那么我可以说,我的东西非常好。
所以,我现在流量是在一定基础的情况,我能够稳定的保持这样的转化率,那对我而言,我可以说,我的东西是比别人的要好。但是我应该要如何提升呢?
通过上面的公式,我可以知道,如果我要继续提升我的转化率,无非两个措施:第一,在流量不变的情况下,有更多的成交笔数;第二,增长流量同时增长我的成交笔数。
当然最好的结果是第一种选项,因为我维持现在的流量相对比较容易,成本不会发生变化;第二种选项呢,会抬高我的成本,因为流量就两个方面:免费和付费,我们知道免费流量提升,并不是手到擒来的事情,而付费流量提升,就会抬高的我的成本,所以我会优先选择第一种方案执行,增加我的成交笔数。
怎么做?各种关联促销,店铺活动,套装打包…不用我多说,简单来说,以前一个流量卖1件,现在你需要想法子一个流量卖2件。可能有人会有一个问题:为什么我不优化单品详情页面促成更多的成交?因为我单品转化率都10%,证明我的详情页面做得还是挺不错,那万一我优化失败,转化率反而跌了怎么办?所以我为了降低我自己的风险,必须先从其他方面入手。
那么如果是你的转化率低于行业水平呢?
很明显,还是这个公式,从成交笔数和流量上找原因,流量多,转化笔数少,先优化详情吧,我可以对比一下其他家卖得很好的是怎么做的,究竟是我客单价高,销量太少,还是有差评导致成交笔数很少的?这些问题,我们都可以弄得明白。而流量少,没转化,那就想想法子先把流量做上来,直通车要不要开?钻展要不要做?我能报一些活动吗?这都是解决问题的方法。
数据分析到这里,并没有结束,我通过反推,找到了我的一些问题所在,我现在要着手改进,那么我需要有个记录,我需要改进的地方。比如说,现在我发现我转化还是蛮不错,就是流量太少了,那我要开直通车,每天带来100个流量,冲击一下我的转化率,所以我记录下来:直通车,流量100个,转化率预计提升多少。因为每天的数据不太精准,波动比较大,所以七天观察一次,给我自己一个反馈,看看有没有达到我需要的目标。
如果没有,还是公式,我得稍微分析一下情况,如果达到,我下一步的计划又是做什么?
所以,分析数据,其实很简单,并没有想象中的复杂,时常有人说数学不好,干不来这个。可以告诉大家,我数学只有在小学三年的之前及格过,重要的是理清数据的逻辑,才能更好分析数据。
所以数据分析的步骤,大致就是这样:判断(究竟是高还是低?)——明白自身需求以及目标(优化点击率?转化率?ROI?)——分析(公式入手)——优化并记录(优化动作是什么)——反馈(是否达到需求目标)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29