京公网安备 11010802034615号
经营许可证编号:京B2-20210330
目前,大数据的发展得到政府的大力支持。如何让大数据为我们创造更多价值,是我们现在最关心的问题,同时,数据分析师人才也成为企业争抢的目标。“大数据”是一种规模大到在获取、存储、管理、分析方面,大大超出传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转等特征。 海量数据和奇思妙想加以链接,孕育着巨大价值。《2015年中国大数据发展调查报告》显示,2015年中国大数据市场规模达到115.9亿元,增速达 38%。面对庞大的市场,不仅各地政府在积极“圈地”,各大数据企业亦纷纷从中寻求商机。
数据作为一种资源,在“沉睡”的时候是很难创造价值的,需要数据挖掘。有人把大数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“用”。
如何提升大数据价值?首先要实现数据公开。数据开放是大势所趋,信息使用的边际收益是递增的,信息流动和分享的范围越大,创造的价值就越高,而线上、线下数据化和数据开放正是信息大范围流动的两大前提。推动数据开放和流通在发达国家已成为共识。自从“互联网 ”上升为国家战略后,中央不断加大力度推动数据开放,为大数据的公开奠定了坚实基础。实施大数据开放行动计划,建立统一的公共数据共享开放平台体系,其用意正是在开放共享。
其次是 要进行数据评估。大数据产业的核心枢纽是数据交易,而数据资产评估、定价是交易的核心。不过,目前大多数政府、企业确实是拥有很多数据,但仅仅限于“数据大”,而不是大数据,也并不了解自身大数据资产的价值。当前,我国缺乏一个共识性的数据资产价值评估模型或参考模型,也没有关于数据资产价值的准确定义。 此次发改委发布促进大数据发展重大工程的政策,有利于大数据评估体系的建立。
最后,是要培养大数据人才。大数据是一种虚拟化的数字及其运算逻辑,不仅需要高端的计算机知识,更需要综合掌握数学、统计学、信息工程等相关学科知识。目前国内的大数据人才储备远不能满足发展需要,尤其是缺乏既熟悉行业业务需求,又掌握大数据技术与管理的综合型人才。
大数据已经成为国家重要的战略性资源和商业创新的源泉,充分挖掘并应用大数据这座巨大而未知的宝藏,将数据变成“慧说话”的活数据,将成为政府精准管理社会的法宝和企业转型升级的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30