京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:你用什么来做数据分析
大数据时代,大数据对我们的帮助是巨大的,我们已经离不开对数据的解析,因此,随着数据规模的持续增长早已是行业定律,据了解,互联网上每一秒钟传输的视频,需要花费一个人5年的时间才能看完。可见数据量之大,数据增长之快已经越来越超乎我们的想象。商业决策也开始越来越依赖数据的分析,如此,建立正确的数据联系,形成准确的数据分析就成为抓住时代机遇的关键。
近日,笔者从外媒看到几款实用的大数据模型工具,部分笔者亲测好用哦!让我们来看看都有什么软件吧!
PowerDesigner

PowerDesigner
PowerDesigner是Sybase的企业建模和设计解决方案,采用模型驱动方法,将业务与IT结合起来,可帮助部署有效的企业体系架构,并为研 发生命周期管理提供强大的分析与设计技术。功能包括:完整的集成模型,和面向包含IT为中心的、非IT为中心的差异化建模诉求。
PowerDesigner将多种标准数据建模技术集成一体,并与.NET、WorkSpace、PowerBuilder、Java、Eclipse等主流开发平台集成起来,进而为企业提供哦你合理的数据分析和具有针对性的解决方案。
ER/Studio

ER/Studio
ER/Studio同时支持逻辑模型和物理模型,是一套模型驱动的数据结构管理和数据库设计产品。主要用于帮助企业发现、重用和文档化数据资产。
ER/Studio通过可回归的数据库支持,使数据结构具备完全地分析已有数据源的能力,并根据业务需求设计和实现高质量的数据库结构。易读的可视化数据结构加强了业务分析人员和应用开发人员之间工作沟通的能力。相比PowerDesigner,ER/Studio Enterprise更能够使企业和 任务团队通过中心资源库展开协作,提高团队作战能力。
Sparx Enterprise Architect

Sparx Enterprise Architect
Enterprise Architect拥有完整的建模生命周期,是一个拥有丰富功能的数据建模工具。主要功能是:提供建模工具、特性丰富系统设计、端到端的全面跟踪,还能提供直观高效的工作界面。
Enterprise Architect帮助企业用户快速建立强大的可维护的系统,而且很容易在共享项目中扩展到大型的协作团队中去。例如Enterprise Architect可以连接到SQL服务器、MySQL, Oracle9i, PostgreSQL, MSDE,Adaptive Server Anywhere 和 MS Access backends以实现知识库共享。
CA ERwin

CA ERwin
CA ERwin是一个功能强大的大数据分析管理工具。它为设计、生成、维护高水平的数据库应用程序提供了非凡的工作效率。 从描述信息需求和商务规则 的逻辑模型,到针对特定目标数据库优化的物理模型,ERwin帮助您可视化地确定合理的结构、关键元素,并优化数据库。
CA ERwin Data Modeler提供了许多版本以帮助管理您的企业数据。
Standard Edition提供了桌面设计和建模功能,可使用简单的图形界面管理您的复杂数据环境。
Workgroup Edition旨在为数据建模者团队的协作建模提供帮助。
Navigator Edition提供了对ERwin数据模型的只读访问。
Community Edition是免费的入门级数据建模工具,它是CA ERwin Data Modeler Standard Edition产品的一个子集。
另外,CA Erwin有一个很活跃的用户讨社区,使得用户之间可以分享知识和各种经验,相互学习。
据统计,2014年全球大数据市场规模达到285亿美元;到2020年,全球大数据市场规模将达到1263.21亿美元,同比增长17.51%。大数据分析师已经成为一种专业、稀缺的资源,如何利用好身边的数据分析工具,建构出完善的数据分析模型就是我们需要学习的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05