京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对数据的分析工作,可以分为三个层次,初级是统计分析,再是OLAP,最后是数据挖掘,这也是随着数据的数量级递增的。关于数据挖掘的作用,Berry and Linoff的定义尽管有些言过其实,但清晰的描述了数据挖掘的作用。“分析报告给你后见之明 (hindsight);统计分析给你先机 (foresight);数据挖掘给你洞察力 (insight)”。
举个例子说。
你看到孙悟空跟二郎神打仗,然后写了个分析报告,说孙悟空在柔韧性上优势明显,二郎神在力气上出类拔萃,所以刚开始不相上下;结果两个人跑到竹林里,在竹子上面打,孙悟空的优势发挥出来,所以孙悟空赢了。这叫分析报告。
孙悟空要跟二郎神打架了,有个赌徒找你预测。你做了个统计,发现两人斗争4567次,其中孙悟空赢3456次。另外,孙悟空斗牛魔王,胜率是89%,二郎 神斗牛魔王胜率是71%。你得出趋势是孙悟空赢。因为你假设了这次胜利跟历史的关系,根据经验作了一个假设。这叫统计分析。
你什么都没做,让计算机自己做关联分析,自动找到了出身、教育、经验、单身四个因素。得出结论是孙悟空赢。计算机通过分析发现贫苦出身的孩子一般比皇亲国 戚功夫练得刻苦;打架经验丰富的人因为擅长利用环境而机会更多;在都遇得到明师的情况下,贫苦出身的孩子功夫可能会高些;单身的人功夫总比同样环境非单身的高。孙悟空遇到的名师不亚于二郎神,而打架经验绝对丰富,并且单身,所以这次打头,孙悟空赢。这叫数据挖掘。
数据挖掘跟LOAP的区别在于它没有假设,让计算机找出这种背后的关系,而这种关系可能是你所想得到的,也可能是所想不到的。比如数据挖掘找出的结果发现在2亿条打斗记录中,姓孙的跟姓杨的打,总是姓孙的胜利,孙悟空姓孙,所以,悟空胜利。
用在现实中,我们举个例子来说,做OLAP分析,我们找找哪些人总是不及时向电信运营商缴钱,一般会分析收入低的人往往会缴费不及时。通过分析,发现不及时缴钱的穷人占71%。而数据挖掘则不同,它自己去分析原因。原因可能是,家住在五环以外的人,不及时缴钱。这些结论对推进工作有很深的价值,比如在五环外作市场调研,发现需要建立更多的合作渠道以方便缴费。这是数据挖掘的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20