京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看Spark源码的时间不长,记笔记的初衷只是为了不至于日后遗忘。在源码阅读的过程中秉持着一种非常简单的思维模式,就是努力去寻找一条贯穿全局的主线索。在笔者看来,Spark中的线索就是如果让数据的处理在分布式计算环境下是高效,并且可靠的。
在对Spark内部实现有了一定了解之后,当然希望将其应用到实际的工程实践中,这时候会面临许多新的挑战,比如选取哪个作为数据仓库,是HBase、MongoDB还是Cassandra。即便一旦选定之后,在实践过程还会遇到许多意想不到的问题。
要想快速的解决开发及上线过程中遇到的系列问题,还需要具备相当深度的Linux知识,恰巧之前工作中使用Linux的经验在大数据领域中还可以充分使用。
笔者不才,就遇到的一些问题,整理出来与诸君共同分享。
NoSQL数据库的选择之痛,目前市面上有近150多种NoSQL数据库,如何在这么庞杂的队伍中选中适合业务场景的佼佼者,实非易事。
好的是经过大量的筛选,大家比较肯定的几款NoSQL数据库分别是HBase、MongoDB和Cassandra。
Cassandra在哪些方面吸引住了大量的开发人员呢?下面仅做一个粗略的分析。
1.1 高可靠性
Cassandra采用gossip作为集群中结点的通信协议,该协议整个集群中的节点都处于同等地位,没有主从之分,这就使得任一节点的退出都不会导致整个集群失效。
Cassandra和HBase都是借鉴了Google BigTable的思想来构建自己的系统,但Cassandra另一重要的创新就是将原本存在于文件共享架构的p2p(peer to peer)引入了NoSQL。
P2P的一大特点就是去中心化,集群中的所有节点享有同等地位,这极大避免了单个节点退出而使整个集群不能工作的可能。
与之形成对比的是HBase采用了Master/Slave的方式,这就存在单点失效的可能。
1.2 高可扩性
随着时间的推移,集群中原有的规模不足以存储新增加的数据,此时进行系统扩容。Cassandra级联可扩,非常容易实现添加新的节点到已有集群,操作简单。
1.3 最终一致性
分布式存储系统都要面临CAP定律问题,任何一个分布式存储系统不可能同时满足一致性(consistency),可用性(availability)和分区容错性(partition tolerance)。
Cassandra是优先保证AP,即可用性和分区容错性。
Cassandra为写操作和读操作提供了不同级别的一致性选择,用户可以根据具体的应用场景来选择不同的一致性级别。
1.4 高效写操作
写入操作非常高效,这对于实时数据非常大的应用场景,Cassandra的这一特性无疑极具优势。
数据读取方面则要视情况而定:
1.5 结构化存储
Cassandra是一个面向列的数据库,对那些从RDBMS方面转过来的开发人员来说,其学习曲线相对平缓。
Cassandra同时提供了较为友好CQL语言,与SQL语句相似度很高。
1.6 维护简单
从系统维护的角度来说,由于Cassandra的对等系统架构,使其维护操作简单易行。如添加节点,删除节点,甚至于添加新的数据中心,操作步骤都非常的简单明了。
参考资料
2.1 单表查询
2.1.1 单表主键查询
在建立个人信息数据库的时候,以个人身份证id为主键,查询的时候也只以身份证为关键字进行查询,则表可以设计成为:
create table person ( userid text primary key, fname text, lname text, age int, gender int);
Primary key中的第一个列名是作为Partition key。也就是说根据针对partition key的hash结果决定将记录存储在哪一个partition中,如果不湊巧的情况下单一主键导致所有的hash结果全部落在同一分区,则会导致该分区数据被撑满。
解决这一问题的办法是通过组合分区键(compsoite key)来使得数据尽可能的均匀分布到各个节点上。
举例来说,可能将(userid,fname)设置为复合主键。那么相应的表创建语句可以写成
create table person ( userid text, fname text, lname text, gender int, age int, primary key((userid,fname),lname); ) with clustering order by (lname desc);
稍微解释一下primary key((userid, fname),lname)的含义:
2.1.2 单表非主键查询
如果要查询表person中具有相同的first name的人员,那么就必须针对fname创建相应的索引,否则查询速度会非常缓慢。
Create index on person(fname);
Cassandra目前只能对表中的某一列建立索引,不允许对多列建立联合索引。
2.2 多表关联查询
Cassandra并不支持关联查询,也不支持分组和聚合操作。
那是不是就说明Cassandra只是看上去很美其实根本无法解决实际问题呢?答案显然是No,只要你不坚持用RDBMS的思路来解决问题就是了。
比如我们有两张表,一张表(Departmentt)记录了公司部门信息,另一张表(employee)记录了公司员工信息。显然每一个员工必定有归属的部门,如果想知道每一个部门拥有的所有员工。如果是用RDBMS的话,SQL语句可以写成:
select * from employee e , department d where e.depId = d.depId;要用Cassandra来达到同样的效果,就必须在employee表和department表之外,再创建一张额外的表(dept_empl)来记录每一个部门拥有的员工信息。
Create table dept_empl ( deptId text,
看到这里想必你已经明白了,在Cassandra中通过数据冗余来实现高效的查询效果。将关联查询转换为单一的表操作。
2.3 分组和聚合
在RDBMS中常见的group by和max、min在Cassandra中是不存在的。
如果想将所有人员信息按照姓进行分组操作的话,那该如何创建数据模型呢?
Create table fname_person ( fname text, userId text, primary key(fname) );2.4 子查询
Cassandra不支持子查询,下图展示了一个在MySQL中的子查询例子:
要用Cassandra来实现,必须通过添加额外的表来存储冗余信息。
Create table office_empl ( officeCode text, country text, lastname text, firstname, primary key(officeCode,country)); create index on office_empl(country);
2.5 小结
总的来说,在建立Cassandra数据模型的时候,要求对数据的读取需求进可能的清晰,然后利用反范式的设计方式来实现快速的读取,原则就是以空间来换取时间。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27