京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于很多人来说,大数据很神秘,也很了不起。但是有一个很重要的前提,那就是需要数据分析师能够有效的处理这些数据,并从这些海量数据中得到有用的信息。 如今,互联网每天新增的数据量达2.5*10^18字节,而全球90%的数据都是在过去的两年间创造出来的。举个直观的例子来说明一下互联网的数据量:假设大西洋里每一升海水代表一个字节的数据,那么整个大西洋存储的数据也只能到2010年就满了。
从外行的角度看来大数据是个挺了不起的东西,它也确实了不起,不过有一个前提就是我们能够有效地处理数据。怎样从海量数据中找出有用的信息才是最重要的。
本文中我们会讲一些大数据的用例比如分析促销行为、诊断交通状况等。我们还会谈一谈大数据的收集方法以及处理的过程。
网上促销
现在一个公司想取得商业上的成功,在线促销已经成为了很重要的手段。不过如果没有进行实时的数据分析那么可以说是干了相当于白干。成功的促销行为应当依据之前收集的数据来决定此次促销所应使用的文案、设计、界面以及针对的人群等。
因为这些数据可以帮助我们理解客户的需求以及市场的动向和机遇。如果想要充分利用这些数据,还需要做到高效地整合数据、打造一个低延迟的分析系统并为分析人员提供一些统计数据直观的图标来进行辅助。
在促销开始之前,我们先要订立一个业绩上的目标。为此我们应该清楚促销针对的客户群和市场。然后将销量和流行度指数这样的业绩目标进行量化。我们可以收集的数据包括销售报表、客户反馈、网站统计等等。
从多个数据源进行分析的好处是它能够为未来的发展提供更多的认识,这是单一的销售量所无法比拟的。单纯的销售量无法体现出消费者和环境的变化因此很难作为预测未来的可靠保障。
大数据在促销上的好处可以总结成下面几点:
富有针对性:这意味着钱能够真正地花在刀刃上,所以看似要多投入但其实能够节约开支。
及时反馈:大数据实时分析意味着可以针对市场的变化迅速调整打法。
为以后的市场决策打下基础。
交通疏导
比如你早上有重要会议,结果却被堵在路上不知道什么时候才能到公司,这时你可能除了干着急也没什么能做的。你不能,大数据分析可以。借助大数据分析,、你可以找出拥堵不严重的路甚至通过实时疏导来解决整个城市的拥堵问题。
在这方面做得比较突出的是谷歌地图。谷歌通过收集安卓用户的位置和运动等信息来预测交通状况并给予用户建议。
不过现在这项服务效果还不是特别好因为谷歌再怎么收集信息也很难知道用户此时使用的是什么交通工具,而开车和骑电动车对于交通的影响是很不一样的。
航班和车队管理
大数据分析在航班管理上可以帮助我们减少花费并节约时间。从每一架飞机或汽车收集的数据燃油消耗、负载、速度、路面状况和航线等。
航班如果计划得不好的话肯定费用会上升,这就意味着赚的钱会变少,这就是物流公司钟情于大数据提升运输效率的原因。数据分析可以帮助物流公司减少空驶的情况并优化行驶的路线。这么一来不光是效率能够提升,对保护环境也能做出一定的贡献。
航班车队管理还能够与交通疏导结合起来为车辆寻找最合适的行车路线,进一步提高效率降低开销。
总结一下大数据分析为航班和车队管理所带来的益处:
实时数据分析可以减少燃油的使用并降低尾气排放。
优化路线减少空驶率。
为车辆提供可视化辅助。
智能新闻聚合
现在已经有很多新闻应用可以根据用户的兴趣来聚合相应的新闻提供给用户。大数据在媒体的生产、归档和聚合上也能够发挥出作用。
单论新闻每天产生的数据量就以PB论而且还在迅速增长。在媒体领域大数据分析的目的是实时地识别、分类、结构化、翻译、分析和管理媒体内容。分析的结果则是为每一个用户单独提供的新闻聚合。
大数据分析为智能新闻聚合带来的益处包括:
高效的信息管理。
提高趋势和数据的即时性。
自动化的搜索和低延迟查询所带来的经济性。
除了这里提到的用例,大数据分析还有无穷的前景留待大家去发掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06