京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Ted Yu目前是Hortonworks高级技术成员,也是一名Apache HBase Committer,拥有15年以上的软件开发经验,以及超过三年的HBase开发经验。2011年他成为HBase代码提交者和PMC的成员,Apache项目按照贡献度“论资排辈”,只有作出足够的核心贡献才能进入PMC,且HBase代码提交者至今仍不足40人。
在2014年12月12-14日北京召开的2014中国大数据技术大会(暨第二届CCF大数据学术会议)上,Ted Yu将与大家一起探讨HBase的未来发展和面临的挑战。
Hortonworks高级技术成员和公司的HBase的核心贡献者Ted Yu
Ted Yu出生在一个计算机科学氛围浓重的家庭,父母都是计算技术方面的工程师,这使得他从小就受到了计算机科学氛围的熏陶,后来进入了清华大学大学,所学的专业为计算机技术及科学。
他之所选择Hadoop/HBase成为自己的研究方向,主要是因为Ted Yu曾在之前供职的公司CarrierIQ做过工程师,CarrierIQ很早就支持了Hadoop,而CarrierIQ平台正是使用了HBase。在实际的使用,Ted发现了大量的问题,作为一个开发者和自身严谨的态度的他将这些问题进行提交,久而久之成为了这个领域的专家。同时他当时就敏锐的判断出这是一个新的趋势,因为Hadoop可以真正实现云计算,在未来的大有前途。
团队协作是取得成功的重要因素
总结了多年的开发生涯,Ted Yu认为团队协作是取得成功的重要因素,因为大部分情况下遇到的困难都不是技术性的,只要团队的目标一致,观点的差异总是可以解决的。他这样解释:
在团队中,每个成员发挥着自己的优势,技术性的阻碍并不是最大的困难,团队的目标一致总能使成员在多方面贡献着自己的力量,进而实现团队的目标。包括他曾经所在eBay的Hadoop构架团队和后来的Apache HBase项目组,他都在团队中作出了大量的贡献,相比较收入而言,他更关注于社区问题的解决。
执着于开源的Ted Yu
Ted Yu一直活跃在国内外的各类大数据相关的会议上,一方面是分享HBase最新的技术发展和趋势,以及HBase的机遇及发展空间,另外他也在积极的推动开源这件事,他曾讲过这样的一句话:“任何封闭式解决方案都因来自其他参与者的激烈竞争而有被淘汰的风险。”
对于开源,Ted Yu认为参与开源比收入更重要,此前他曾在采访中表示,“帮助解决社区上的问题比提高当前的收入更重要。”
关于开源的需求,Ted Yu也有自己的看法。他认为从Linux被建立为企业集群(后来的云计算平台)事实上的操作系统的年代开始,软件开发已经历了巨大的变化。无论单个公司内部团队的规模有多大,它的资源都无法与开源社区的资源相提并论。其中的原因是:
服务于多种社区需求的解决方案将更加通用,社区在技术上的集体智慧优于内部人才。开发人员,特别是那些刚接触开源运动的人,应该更为积极地查看代码审查过程的反馈。很多时候,其他开发人员,尤其专注于特定领域的开发人员,可以更迅速地发现设计缺陷或者大家都忽略的问题。我们应该将开源过程视为将解决方案提升到一个更高水平的过程。
HBase作为Hadoop下的一个子项目,目前发展比较强大,是很值得大家关注的点,Ted Yu继续将在今年的2014中国大数据技术大会上和大家沟通交流HBase的未来发展和面临的挑战,敬请关注。与此同时,在这里也分享他在去年中国大数据技术大会上关于HBase和HOYA主题的演讲PPT。
本文: CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12