京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Trifacta是一种提供数据分析服务的平台,最近获得了风险投资以推动其能使数据分析师更容易地做数据整理的工作。它的目标是能够比目前更快、更容易地收集、清理和转换数据。
数据整理(Data wrangling)一直是每个大数据项目中最耗费时间和最令人痛苦的部分。在我们这个时代,数据是流动的、异构的,作为数据源其属性会不断变化。 NoSQL数据库一直都尝试解答在存储方面是使用基于列式存储还是基于文档型存储,但问题依然是如何收集数据和应用其语义。
Trifacta以用户为中心的角度而不是以程序员的角度去解决问题。业务分析师和数据科学家将能使用可视化的方式去清洗数据集。基于伯克利分校和斯坦福大学的研究,该平台的目的是使员工和机器一起合作,以从数据集中提取数据。
使用可视化的方式我们可以从大数据集中自动化采样数据,这让分析师可以在很短的时间发现有趣的模式。Trifacta可以应用机器学习算法为重新组织信息和整理提供建议。大数据分析师可以将数据集分组为信息的逻辑部分,每次将其规范化,并在其工作过程中以友好的界面方式显示。归纳概括整个数据集合是最后一个步骤,这将最终形成半结构化的数据集并最终成形。该平台是在底层设计时考虑到用户的体验,让数据分析师能专注于数据的处理,而无需开发复杂的管道去清理数据和把它们放入数据仓库。
Trifacta的项目前身DataWrangler 和相关研究文章都可以在线获取并可以从中了解Trifacta是如何实现的,因为它们目前依然处于封闭的beta测试阶段,所以只能通过预约邀请的方式进行演示。
Trifacta Seeks to Simplify Data Wrangling-as-a-Service
Trifacta, a data analysis services platform, recently received VC investment to advance on their efforts of making data wrangling easier for data analysts. The goal is to collect, cleanse and munge data in a fraction of the time and effort it currently takes.
Data wrangling has traditionally been the most time consuming and painful part of every Big Data project. In our era, data is flowing, heterogeneous and constantly changing attributes as data sources are evolving. NoSQL databases have long tried to answer this question in the storage side by being column based or document based but the problem still remains in getting the data collected and applying semantics to it.
Trifacta is approaching the problem from a user centric perspective, instead of a developer one. Business analysts and data scientists will be able to cleanse datasets in a visual oriented way. Based on research at Berkeley and Stanford, the platform aims to make employees and machines collaborate together in extracting insights from datasets.
Automated smart sampling from big data sets together with visualization allows for the analyst to discover interesting patterns at a fraction of the time. Trifacta can then apply machine learning algorithms to suggest ways to reorganize information and get it into shape. The analyst can group the dataset into logical parts of information, normalizing it one step at a time and viewing the outcome in a user friendly way along its course of work. Generalizing in the whole dataset is the last step which turns the semi-structured dataset into shape. The platform is designed from ground up with user experience in mind to allow data analysts to shift in depth through data, without the need to develop complex pipelines to cleanse the data and bring them into the Data Warehouse.
Trifacta’s predecessor research project, DataWrangler and the research paper are available online and can give a sneak preview of what Trifacta is getting to, since they are still in a closed beta, only scheduling demos by invitation.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01