
Google Analytics存储了全球范围内网站的大量静态数据,随着数据体积越来越大,检索的难度也必然随之增加。近日,Gen Furukaw在Dzone上撰文表示,Google Analytics的高效一定程度上归功于其兼职存储BigTable。
以下为译文
在Google,随时都可能存在大量应用程序被添加到其基础设施,而这些应用程序中,任意一个都可能给系统带来繁重的工作负载。迎合这样的资源需求并不简单,而在有限时间内做到这一点就更是难上加难了。
如果Google部署的是一个单节点上的传统数据库,那么一旦达到容量限制,他们必须为其更新硬件。鉴于Google应用程序的数量和存储数据的体积,这种硬件升级可能每天都会进行一次。虽然负载也可以分配到多个节点,但随着节点数的增加,系统维护的难度将变得不可思议。
综上所述,鉴于大规模系统升级和维护的难度,标准关系型数据库对Google来说并不可选。
寻找一个可扩展解决方案
为了保证速度,及避免频繁的更新硬件,Google定制了自己的存储解决方案——BigTable。取代关系型数据库将数据存放到表格中,BigTable使用了多维排序映射的方式对数据进行存储,也就是现在我们所说的键值存储类型。这种方式不仅提升了性能,也简化了扩展过程。
关系型数据库中的信息存储
关系型数据库将信息的每个部分都存放到独立的位置,通常是表中的一列。同时,在关系型数据库中,数据的规范化非常重要,这个过程保证了其他表格或者列中不会存在冗余数据。
举个例子,客户的“姓”必须存放在某个表格的对应列中。如果某个客户的姓在其他位置发现,那么它将被删除,信息的检索仍然会被指定到原始表格。
这种结构的缺点是数据库内部可能变得非常复杂,从而导致即使一个简单的查询都可能涉及到大量的执行路径,而所有这些路径都会在运行时进行计算以寻找最优路径。数据库越复杂,运行时就需要越多的资源来确定查询路径。
键值存储中的信息存储
在键值存储中,数据被允许存在多个备份。取代使用其他昂贵硬件资源来增加速度,这里的设计理念是利用磁盘空间,它更新起来非常容易,成本也不高。
对于简单查询来说,多备份非常有利,在键值存储中,相关的数据可以被存储到一起,从而避免在查询过程中访问多个路径以获得所需数据。
取代关系型数据中的表格存储类型,键值存储使用域,同时也无需预定义数据结构模式。域中存储的数据通过键定义,它们可以通过大量不同的属性访问。
这些属性可能是字符串,也可以是流行编程语言中匹配的任意数据类型,它可能会是数组、对象、整形、浮点型、布尔型以及编程语言中使用的任意基本数据类型。
在键值存储中,取代数据本身,数据完整性和逻辑通过应用程序代码维护,通过使用1个或多个API,开发者可以编写出最优的实现方法。这样一来,数据检索工作被转移到编写正确的逻辑上,而不是依赖数据库去优化在大量可能路径中选择一个最佳路径。
写在最后
当然,除了键值存储的使用之外,Google Analytics快还源于其优秀的编程逻辑,这点就不再一一详述了。本文来自:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28