京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业必须掌握的三种大数据 关乎企业的生死
在互联网风生水起的时候,谈大数据是一个老生常谈的话题,但“十三五”规划后,这又是一个不得不谈的大方向。“十三五”规划建议提出:“实施国家大数据战略,推进数据资源开放共享。这意味着以习近平同志为总书记的新一届中央领导集体,站在时代最前沿,带领全国人民迈入大数据时代。
我们就是生活在这么一个充满“数据”的时代,我们使用微博、QQ、微信等社交工具,我们通过互联网阅读、购物、看病,旅游等,都在产生大量的新数据,成为庞大的"数据分析师"数据库中的一部分。从目前国内互联网发展看,大数据已经融入亮我们的生活,与我们的工作息息相关。它能真实的纪录每个人的轨迹,且能够提供有理有据的分析。
然而,国内大数据的实际应用却非常不成熟,甚至可以说应用的非常浅。为什么说非常浅?因为它停留在表面,目前我们常见的国内大数据应用到企业大多数集中在品牌舆情监控、行业跟踪、消费者行为跟踪三方面,不能说这么做不对,但这大数据的面太窄,过于倾向企业或品牌,对企业或品牌长远发展很难起到扭转乾坤的作用。而原本大数据远不止于这种微观层面,未来企业要融入新业态、新环境的市场环境,不仅要应对融入国际市场的各种问题,更要合理应对来自国内市场的瞬息万变以及需求转变带来的问题。这就需要企业坐怀不乱,保证尽可能保持快速高效的抓取最新大数据,以便迅速作出最有力的战略决策。因此,未来企业在融入新的市场环境时,要保证相对的竞争优势,有三项大数据是必须掌握的。
广大用户数据:以全局应对变局
国家“十三五”规划提出,要发挥消费对经济增长的基础性作用,扩大居民消费,要扩大服务消费为重点带动消费结构升级。并在基础上促进流通信息化、标准、集约化。消费是市场经济健康稳定发展的基础,也是企业赖以生存的根本。没有购买,就没有产品流动,更不会有资金流动。当前国内核心三大消费群体70后、80后、90后,三者是受不同时代影响成长起来的,而三者之间消费理念、经济能力,以及消费需求存在十分鲜明的差异化。但随着时间的推移,三大主流人群未来所呈现的消费潜力必然呈现递增趋势。70后逐渐老化;80后正步入结婚生子的而立之年;90后正成为社会主流的新青年,那么广大用户年龄层次的差异,必然导致产品需求必然呈现层次化改变。
怎么找准用户的核心需求?这必然要源于用户的信息接收方式、消费行为习惯、选择购买方式等综合因素,才能保证做出最精准的决策。这些精准聚焦的用户行为,必然是需要通过观察广大用户全局数据,才能更有效的抓取某一类用户特征。没有一个品牌能够赢得所有用户,但你所能满足的受众必然是源于广大的用户。所有用户代表是市场需求的整体,而某一类目标用户代表的是市场需求的部分,整体是由部分组成。对于企业来说,核心是要迎合某一类用户,但怎么决策却需要根据市场需求的全局,以应对某一类用户需求的变局。根据用户大数据,以宏观视角,做围观决定,才能更好的融入用户群体。
竞争对手数据:以敌动决定我动
竞争是市场发展的自然规律,也是市场走向成熟的驱动力。没有竞争的行业最终都将因为缺乏创新力而灭亡,或是被替代。每一个行业有大数据,每个企业也是如此,它所做出的任何决定,比如新品上市、营销活动、广告轰炸等,都会被大数据所纪录。一个行业的繁荣与否,与行业内竞争有着直接的关联。而竞争不仅能够推动产品质量、技术等综合提升,还能加速服务的升级,同时带来关联的整套体系进化。因而,企业不能忽视竞争,更不能任何竞争对手的新品,或是每一个新进入者,除非你已经占据明显的垄断优势。
未来的竞争,不仅仅是线下传统渠道,线上互联网也将角逐的新阵地。那么,怎么制定有效的品牌营销策略,怎么制定合理的市场推广策略,怎么布局差异化的渠道网络?所有的核心优势的建立,必须清楚地认识竞争对手所处在的位置和方向,否则如果实力不足以撼动对手,那就可能被对手绞杀。因此,企业必须时刻警惕竞争对手的动态,保证时刻掌握敌情变化,以敏锐的做出有力回击。这就可以通过大数据的定期监测,保证获取最新的竞争信息,但这一信息必然不是某个竞争对手,而必须是对自身能够造成威胁的所有竞争者。掌握这些最有力的实时数据,企业就能够游刃有余的根据敌动决定我动。
无线端大数据:以即时谋划大势
未来,每一个企业都不可能脱离互联网与信息化,而更不能脱离即将主宰便捷化信息获取与消费购买的无线端。不论是目前国内5亿智能手机用户这一庞大的规模,且还在呈上升趋势,并即将转化为全民普及的趋势。还是2015年双十一的销售数据无线端格外抢眼,占据60%的购买量。这两方面都预示着未来的消费生活将是无线端的天下,更是随时随地便捷体验的天下。无线端,这不仅是一个超强的传播载体,更是一个超强的购买平台,你所能想到的都能通过IT技术实现。在这种大趋势下,每一个企业都应该谨慎客观的去考虑无线端的使用。
与此同时,手机已经成功主宰了大众的日常生活,60%的大众已经沦为手机重度依赖症患者。而互联网将所有用户不断割裂,但无线端却能将这所有被各类的若干群体的特征整体的呈现出来,这就是它的独特而又强大之处。无线端能够反应所有商品的销售数据,各类平台的时效数据,甚至各种用户的地域、年龄、喜好等综合与单项数据。这一切都能会呈现在一个数据后台,最终变成合理分析的依据。因而,无线端,不仅是企业的传播平台,也是企业的销售平台,更是获取即时数据的保障。未来是快节奏更新的社会,企业只有掌握无线端大数据,才能掌控即时的局势,从而谋划未来的发展大势。
大数据不仅是一场技术革命,一场经济变革,也是一场国家战略的变革。它所带来的是产业革命,更关乎每一个企业的生死,你需要做的就是尽可能的掌握它,并正确利用它,而不是排斥。大数据是发展的必然,但绝对不仅限于当前的表面应用,未来将发挥更深层次的作用。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30