京公网安备 11010802034615号
经营许可证编号:京B2-20210330
民机客服工程的大数据应用
大数据技术正深刻影响着民机产业链的上下游,工业大数据缘起国外,在民机领域大数据应用发展较快,而在国内民机客服工程领域也有所突破。
大数据属于数量大 (Volume)、输入和处理速度快 (Velocity)、数据多样性 (Variety)和价值密度低 (Value) 的复杂、海量信息,无法用传统工具处理分析。大数据可分为三类:一是社交类数据,记录用户行为、反馈数据等;二是商业类数据,包括消费者数据、ERP数据、库存数据以及账目数据等;三是工业类数据,又称机器和传感器数据,包括智能仪表、工业设备传感器、呼叫记录、设备日志等。
目前工业大数据形成了以“工业互联网”为代表的美国模式、“工业4.0”为代表的德国模式和“两化融合”、“互联网 ”为代表的中国模式。
工业大数据作为大数据体系的分支,与其既有共通性,又有特殊性。在共通性方面,都是基于海量数据、分析技术和大数据思维三要素,"数据分析师"以预测为核心,以模型和算法为关键。
客服工程数字化的内在驱动是大数据
当前的民用客机研制不但在传统工程技术体系内追求突破创新,更注重从服务客户角度对产品设计方案实施再开发,即“民机客服工程”。客服工程是对产品定义的开发补充,是对产品使用性能的技术创意,它把产品操作和维修等固有特性转化为外在表现,从而构建起产品全生命周期持续安全健康运行的基础。从技术角度看,民机客服工程更多地使用数理统计和逻辑判断工具,更注重大数据在飞行效率、健康管理等领域的应用。
大数据应用的关键技术分析
数据分析师从数据源获取到产生最终价值,一般经过数据的采集准备、存储管理、计算处理、数据分析和知识展现等五个主要环节。相对于传统挖掘技术,大数据分析的技术突破主要集中在存储管理、计算处理和数据分析三个核心环节。在民机应用方面,又涉及工业物联网、航空电信网等关键技术。
"数据分析师"面对海量数据,传统存储技术一方面是存储和计算物理分离、易受I/O瓶颈制约,另一方面是数据数据冗余、扩展、容错和并发读写能力不足。谷歌文件系统(GFS)和Hadoop分布式文件系统(HDFS)在物理上将计算和存储节点结合在一起,避免了数据密集计算时的I/O堵塞;采取分布式存储架构,以提高并发访问能力,在大文件存储上的表现优异。随着应用和需求的发展,内存型数据库在提高随机、海量小文件频繁读写方面表现优异。
传统关系型数据库采取结构化数据管理方式,优点是数据一致性强,缺点是容差性、并发性较弱。谷歌Big Table和HadoopHBase等新型非关系数据库(NoSQL)通过“键-值”(Key-Value)对、文件等非二维表,提供了处理多源多类非结构化数据的解决方案,由于只关注结果一致性,不追求过程一致性,效率也充分提升。谷歌推出Spanner数据库,可在全球部署100万~1000万台服务器的超大存储系统,通过原子钟进行全局精确同步,在非关系型数据库基础上实现一致性,同时还支持SQL接口,体现两种数据管理技术融合发展的方向。
并行计算关键技术
传统高性能计算的特点是“数据简单、算法复杂”,大数据是典型的数据密集型计算,更重视计算单元和存储单元间的吞吐率。谷歌的MapReduce并行计算技术,通过廉价通用服务器组建系统、添加服务器节点线性扩展系统处理能力,成为应用最为广泛的大数据计算平台。基于MapReduce,业界又发展出多种并行计算技术:一是“边到达边计算”的流计算,如Yahoo的S4和Twitter的Storm;二是针对大规模图数据进行优化的图计算,如谷歌的Pregel;三是将MapReduce内存化以提高实时性的内存批计算, Spark;四是可秒级处理PB级数据的快速交互分析,如谷歌的Dremel。2013年,Hadoop社区推出的将任务调度和资源管理分离、适合多种计算模型的通用MapReduce架构YARN,现已发展成为大数据计算平台的公认标准。
大数据分析技术路线先凭借先验知识人工建立数学模型分析、而后通过大量样本数据进行机器学习。2006 年,谷歌等公司提出增加人工神经网络层数和神经元节点数量,构建深度神经网络以提高训练效果,并在后续试验中得到证实。基于深度神经网络的机器学习技术在语音识别和图像识别等方面取得了较好效果。
工业物联网
工业大数据离不开工业物联网的支撑。第一代工业物联网以模拟信号单向传递为主,布线复杂、抗干扰性差。第二代工业物联网以数字分布式控制系统为代表,信号精度提高但网络实时性和稳定性不足。第三代工业物联网突出现场总线控制,采用全数字、开放式双向通信网络将各控制器与设备互连,而更为便捷、低廉的工业以太网已开始取代现场总线技术。第四代工业物联网的特点是无线传感和通信,突破传统分层控制体系,形成制造、管理、分析、服务的全网一体化架构,同时还具备现场设备感知、实时微处理微计算、微秒级快速响应和复杂环境下稳定传输等能力。
航空电信网
航空电信网(ATN )是基于国际标准公共接口服务和协议,集成地面、地空和航空等多种数据子网,以实现统一数据传输服务的全球空地一体化航空专用通信网络。ATN最大的转变是从面向字符传输到面向比特传输,是未来实现航空大数据实时分析的基础通信保障。ATN主要由通信子网、ATN路由器和终端系统组成。其中ATN通信子网一般由机上子网、空地子网(如甚高频地空数据链、二次雷达S模式、 卫星通信、高频地空数据链等)和地面子网三种形式的数据通信网络组成。而ATN异质网际间的数据传输,则由ATN路由器实现。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27