
大数据系列之大数据分析对IT资源的需求
为了准确描述中国大数据市场和技术发展趋势,解析大数据发展的各阶段对IT技术的需求,2013年6月,中桥调研咨询对中国480家最终用户的IT管理者和专业人员,就大数据市场和技术发展趋势展开了调查。中桥首席分析师"数据分析师"结合其在欧美数据中心领域十几年的市场调研积累,对中国大数据市场趋势的调查数据进行解析,以诠释中国大数据市场和技术趋势。同时,会通过在线讲座(www.webinars-china.com )和中国读者解读中国大数据市场趋势,以及大数据对IT技术、IT架构、IT管理以及IT格局的影响。中桥结合对中国大数据市场的调研数据和分析,将分成四个系列对“中国大数据价值和趋势”进行解读。
在系列1里,中桥就大数据分析对未来24个月以及企业的大数据分析投入重点进行分析。在系列2 里,中桥将就大数据分析对IT资源的需求,包括IT架构、计算节点以及存储技术等进行分析。
大数据分析对IT架构的需求
在大数据时代,随着数据存储量的爆炸性增长以及分层网络架构的出现,IT复杂性达到了前所未有的高度,而大数据分析使得传统IT架构更是不堪重负。那么从企业角度来看,他们的大数据环境需要怎样的IT架构呢?中桥调查结果表明(图1),企业级用户(员工人数在1000人以上)主要选择的是“透明、经济、智能、自动化”的IT架构(29.3%),中小企业(员工人数在1000人以下)则主要选择的是一体机方案(服务器、存储、网络、大数据分析软件)(28.9%)。企业级用户倾向于开放、异构、跨平台的IT架构,因为其用于大数据分析的IT架构发展较为成熟,如何继续提高BI效率是企业级用户选择IT架构的重点。中小企业尚处于IT架构发展初期,因此一体机的方案成为中小企业的首选。受访者的选择结果也体现了中国企业未来对IT架构的需求趋势,说明数据整合和ETL是中国企业的迫切需求,也是目前面临的最大问题之一。
图1. 大数据环境对IT架构的需求
大数据分析对计算技术的需求
再从大数据分析的计算方式来看(图2),21.6%和21.3%的企业级用户分别考虑x86虚拟化和小型机来部署大数据分析方案,中小企业(23.8%)则主要考虑刀片服务器的计算方式。刀片服务器的高密度特点有利于提高计算能力、保持高IT密度。企业级的应用多数运行在小型机的平台上,这造成如果大数据分析是在现有基础上实现,则小型机就成为了企业级的首选;如果要选择在一个全新平台实现大数据分析,那么X86虚拟化就成为了企业级用户的第一选择。结合我们之前所分析的,目前中国市场的大数据分析速度和频率远低于欧美市场,这导致中国企业在数据分析,这个大数据通过IT创造价值,这一重要环节上比较薄弱。
▲图2.大数据分析对计算技术的需求
大数据分析对存储的需求
从大数据分析的第一个环节——数据收集和存储来看,大数据时代应用数量、应用数据量和使用者数量的增长,对存储IOPS以及OLTP和OLAP的要求越来越高,具体体现在存储不能满足业务关键型应用的需求。从数据分析师就企业支持当前数据分析和/或进程活动的存储类型分析来看(图3),FC SAN是企业级用户(42.1%)和中型企业(34.0%)的首选,远高于其他存储类型的企业占比。这是因为FC SAN对OLTP和OLAP的性能稳定性优于其他存储技术。这一调查结果也体现了,目前中国用户大多处于大数据分析的第一阶段,存储和IT架构大多以集中式为主。随着Hadoop和MapReduce的不断普及,用户逐渐进入近实时和实时分析阶段,节点式存储的占比会随之逐渐增加。
▲图3.大数据分析对存储的需求
那么在大数据时代企业的存储能够满足需求呢(图4)?中桥调研结果显示,31.6%的用户计划在未来12个月部署新存储来满足业务关键型应用的需求,33.2%计划在未来12-24个月部署新存储。这表明传统存储越来越无法满足业务关键应用的性能需求。在未来24个月,64.8%的用户将会部署新存储来满足大数据时代,业务关键型应用对存储性能越来越高的需求。
▲图4 大数据分析时代存储的发展趋势
通过上述一系列大数据对IT资源的需求分析,中桥分析师"数据分析师"认为,传统的IT架构、计算方式以及存储正成为中国用户通过大数据分析处理快速提高IT效率,挖掘数据价值的巨大阻碍。而统一、透明、智能的自动化IT架构管理、高密度下卓越的计算能力,以及能够满足存储IOPS与OLTP和OLAP的新型存储则能够为企业创造价值,实现通过IT突破创新来提升企业竞争力的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16