
每个电商企业都应该分析的九种数据
要想在如今的电商大战中存活下来,每个创业者都需要做好每一件事情,从最基本的搜索引擎优化(SEO)到移动广告。而一些分析工具能够帮助你更好的了解企业的运营情况。
哪些数据应该留意?我们咨询了一些成功的电商创业者,他们分享了他们认为最重要的数据,以及这些数据的作用:
1. 用户获取成本
如果你经营着一个电商企业,但是却不知道每天有多少用户登陆你的网站,登陆用户和完成购买用户之间的比例是多少,以及吸引用户的成本是多少,那么你在这 个行业不会存活太长时间。搜索引擎优化是获取用户的一个好方法,但是仅仅做好搜索引擎优化还不够。有的时候为了吸引更多用户,你必须在金钱上有所付出,而 且你必须清楚的知道哪种方法最能吸引用户。即使在你不得不拒绝用户的时候,你也要清楚的知道拒绝用户的成本。我们"数据分析师"在TuneBash就是这样收集并分析用户数据的,在电商领域有这么一句话:“如果你"数据分析师"不能分析数据,你就不能控制流量。”
– Joseph Ricard, TunebashInc
2. 未完成付款的订单
通过努力的工作,你将用户吸引到了你的网站上。你开始更辛苦的工作,为用户提供他们想要购买的产品。用户们点下了“现在购买”的按钮,然后被重新定向到 付款页面。然后用户突然放弃了购买,到底发生了什么?"数据分析师"通过分析未完成付款的订单,能够让你了解到用户为何最终放弃购买。前一阵,我们发现有一个用户在很短 的一段时间内,放弃购买了5件产品,我们对此十分奇怪。通过调查我们发现,原来是我们的页面不接受来自加拿大的订单。因此,作为一个电商企业,未完成付款 或是用户放弃购买的订单,是你应该进行追踪和分析的数据。
– Brett Farmiloe, Digital Marketing Agency
3. 谷歌分析实验
在谷歌分析(Google Analytics)中,你可以设定多个测试。你可以为多个网页设定目标。有了谷歌分析,你能够对网页做出准确的分析,而不再是凭借经验进行猜测。我强烈建议创业者使用谷歌分析这个工具。它得出的结果往往能够让你大吃一惊。
– Nicolas Gremion, Free-eBooks.com
4. 访客价值
平均每个访客为你带来多少营收?如果你知道这个确切的数字,你就能够将吸引网页流量的成本设定在一个合理的水平上。并且,你还能够通过曾家购买转换率和消费者价值来提供这个数字。
– Joe Barton, Barton Publishing
5. 终身价值
在一段时间内,每个消费者的终身价值以及他们的流量源是一个重要的数据。你能够很轻松的为一个产品设计出推广计划,并将它卖给一个消费者。但是当消费者 数量众多的时候,你又将如何设计出一个优秀的市场营销计划呢?而且你还要同时顾及到新增消费者和旧有消费者,让他们对现在和未来有可能出现的产品产生兴 趣。
– Rob Emrich, PaeDae
6. 流量
很显然你希望那些正在寻找你的网站的消费者能够来到你的网站购物,为你的网站增加流量。但是那些并不是在可以寻找你的用户,同样不可忽视。他们也许正在网上 寻找某一种商品,而你恰好正在销售这种商品,这时你要做的就是将这部分用户吸引过来。用户流量是最能为你带来收入的因素。
– Rameet Chawla, Fueled
7. 投资回报率
很多在线企业开始在网上投放广告,但是他们却并不关注投放广告的投资回报率。通过分析在线广告的投资回报率,你可以知道哪些渠道的广告效果最好,哪些渠道效果不尽如人意,应该不再使用。另外,你还可以对多支广告的效果进行分析,以便在最好的渠道上投放效果最好的广告。
– Patrick Conley, Automation Heroes
8. 购买渠道
除了大家都在分析的CPA(每购买成本)之外,我们还会专注于分析用户的购买渠道。了解用户在哪里找到了我们,并进入购买程序。这一点十分重要。如果不能够很好的对此数据进行分析,你就无法对用户的购买转换行为进行优化和提高。
– Adam Cunningham, 87AM
9. 移动设备访问比率
如果到现在你还没有针对移动设备进行优化的网页,那你就有大麻烦了。很多公司每个月都会针对移动网页使用情况制作报告,我们"数据分析师"惊讶的发现,在所有访问我们 网站的用户中,接近20%来自智能手机和平板电脑等移动设备。因此你"数据分析师"应该分析一下有多少用户在使用移动设备浏览你的网页,为所有移动设备创造一个优秀的浏 览和购物体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29