京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据意味着什么?专门团队研究大数据
周四白宫通过博客选对宣布将成立专门团队研究大数据,誓要弄懂大数据能带来什么好处,也要明白大数据背后的陷阱,以及大数据对政府的政策制定的影响。(大数据主要针对个人隐私)
大数据这东西你说一套他说一套,不管怎么说,总之大数据非常复杂。其中部分原因是大数据并不是单纯技术,虽然听上去好像是,大数据"数据分析师"是对数据收集、储存和处理的多种优化方式和技术提升,跨整个技术领域。此外,大数据所涉及到的数据、隐私、甚至是大数据的“大”,根据不同的应用环境都有不同的具体含义。大数据的研究已经进行了5年。
以下是白宫团队需要解读的关于大数据的5个方面。
1 安全并不等同与隐私。
Adobe公司和Target百货都曝光过用户数据泄漏丑闻。某些公司存储了太多的用户数据,保存时间又过久,就都会造成问题。如何避免数据被用在不该用的地方是技术要解决的问题,但是公司该如何使用数据应该是政府政策制定的问题。
2 隐私利弊共存。
现在再反复谈论国家安全和隐私已经没有太多必要,自从斯诺登事件以后,这类争论无非是关于政府收集个人隐私的对错。但是,人们有必要记住在这个消费化世界,如果要享受便利,就要牺牲隐私。某些公司使用个人隐私的方法不太受人们喜欢,要纠正这些公司的错误用法已经变得很容易,甚至成为一种必要。我们要知道,在个人隐私和免费服务之间,特别在互联网上,我们必须做出牺牲。
3大不能说明什么。
在我看来,无论是海量的数据收集量还是数据的来源范围之广泛都只是障眼法。如果超出了系统的处理能力和分析能力,太多的数据只能带来问题。大框架下的操作同样可以应用于单个的人,这才是毋庸置疑更麻烦的。不论是对犯罪嫌疑人的GPS活动轨迹追踪还是各种面部识别APP,不论是社交网络还是健身设备,搜集和分析所需的个人信息的方法比起从前多多了。
4 个人所指的概念和以前不同。
互联网的庞大体量(人们信赖的各种服务的载体——从信用卡到Gmail),以及收集数字信息的宽松政策完全颠覆了私人和公共的概念——尤其在合法环境下——所以要鉴别是否违反法律变得更加困难。这一切只是因为收集信息变得更容易,但是,并不意味着我们可以滥用数据。
5 数据是变革的未来。
人们不能视而不见的现实已经发生:任何一条会影响数据使用和收集的法规对未来世界的影响都是巨大的。这不是夸大其词,但是只要一想到Google、微软和Facebook这种大公司在数据处理领域方面的强大能力,一想到这些公司已经将大数据应用在响应领域这个事实,我们就应该清楚数据的重要性已经毋庸置疑。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30