京公网安备 11010802034615号
经营许可证编号:京B2-20210330
5点大数据挖掘要注意 学会整理数据和管理客户流量
互联网+大数据已离不开我们的生活,在企业运作中也是同理。要想让企业快速发展起来,学会利用数据是必备基础之一。数据分析师这个职业也因此而诞生了,数据分析师是专门对数据进行有效数据分析。作者是游戏开发平台GameSalad CEO Stephen Nichols,通过分享自己的企业在数据利用上的经验,提醒众多的创业者不能只凭感觉行走,要用数据说话。
不管是多么小型的创业公司,对于数据分析或数据挖掘这块都必须要不断扩大、不断深入。拥有越多的数据来源,有更多的数据可以分析,进而得出更准确完美的结论,最终才能更成功地为特定客户群服务。
我们公司在做自己的数据驱动工作时学到的最大教训是——在建立产品之前先努力做好数据和情报的收集分析,并且,从第一天开始就把高度注意力放到用户上。以下是对待数据需要注意的5个要点,或将有助于你从数据分析或数据中挖掘有价值的信息。
做数据驱动前,先做好对用户的数据收集。不断挑战自己的假设:用户会是谁?你希望他们是谁?虽然可能先是简单地对网站的访客进行调查,例如询问“是什么促使您来到我们的网站?”但这其中也蕴含着你很有可能忽略的重要信息。
"数据分析师"利用有效的工具(如实际用户行为的录像记录)去分析人们从一开始到最终买单的浏览过程是怎么变化的,是什么让他们访问这个页面,而不是其他页面?衡量用户在做什么,并确定哪些关键绩效指标(KPI)需要提高。产品的迭代和用户体验的提升都是让KPI往正确方向前进的因素。
在这里也可以一提很受欢迎的A/B测试(A/B测试是一种新兴的网页优化方法,可以用于增加转化率注册率等网页指标),但我并不依赖于它去做任何决定。它需要消耗大量的流量和耐心去完成统计、验证假设。在大多数情况下,最好选择忽略它,而是专注于KPI以及产品迭代。
在设计产品之初,要考虑用户群体的反馈。通过数据分析工具去分析、设计产品,多维度利用和分析这些数据,可以在以后的改造中节省很多力气。这样一来,初期的产品也可以让你和用户更近,从而观察用户和产品是如何相互影响的,而不是单纯拿一堆调查问题覆盖他们。
在我们公司,对于不同的功能我们会用不同的供应商,包括数据路径、客户支持和市场营销自动化等。Mixpanel(一家数据跟踪和分析公司)有着我 们的所有原生数据,它监控用户流量,进行留存分析,并建立了转化渠道分析。Segment.io(为移动开发者提供便利的分析数据分发服务的公司)可识别 用户,跟踪用户的活动,和路由数据到合适的地址。内部通讯可触发基于事件的消息以及处理自动化留存信息并参与到营销当中。这让我们可以确定用户的喜好,比 如他们是从哪里登录的,是怎么来到这个网页,以及他们将要去哪些网页。我们还使用了自定义路由系统,让数据保持干净,这对于成千上万的用户产生的大量事件 而言是特别重要的。
我们一早就明白快速迭代的真理:宏大繁杂的设计并不可行。通过快速敏捷的模式,我们不但做到从系统上满足业务的日常需求,还腾出时间和精力去思考新的选择、探索更多的可能替代策略。
我们不断地衡量,检讨,改正,以及重复。按月或季度来计划,有助于提高灵活性。我们每天都不停地关注每个部分、每个细节,去发现我们所知道的和不知道的,一步一步解决那些最困难,最重要的问题,然后迭代产品。
在确立最适合业务发展的用户原型时,使用智能的策略避免陷入寻找原型的怪圈中。找出谁在使用你的产品,这看起来很简单,但它也涉及到查找原生数据以 及找出相关性等问题。这些程序和数据包都存在于R和Physon(数据分析主流编程语言)中,它可以帮助你决定需要哪些以及多少用户原型。
从“用户的支持”到“用户的成功”的转变看似简单微小,但对员工的态度以及用户的满意度会产生巨大的影响。“支持”意味着一种负担,是你必须做的事 情。而“成功”意味着分享,是你想要做的事情。“让用户成功”是每个员工的职责,因此他们需要被授予权利去代表客户提出建议,被授权的员工也代表着被授权 的用户。
在过去,我们没有工具可以去了解我们的用户行为。现在我们可以看到他们在点击什么,他们是从哪里登录进来的。这样子我们就可以与每一位用户接触,不 管是通过某种渠道还是为了处理个别问题。既然我们知道了谁在访问我们的网站,那么,我们(数据分析师)也可以通过他们来接触更广泛的人群。更重要的是,我们可以根据这些 数据继续调整产品、满足用户的需求,而不是只靠单纯的假设。
在2016年或往后的时间里,这(数据利用)将会是所有企业的一个基本能力,那些仍沉浸于靠猜测来顺应发展的都将被淘汰。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09